分析 (1):由題意可得:e=$\frac{\sqrt{2}}{2}$=$\frac{c}{a}$,2a+2c=4+2$\sqrt{2}$,又a2=b2+c2.聯(lián)立解出即可得出橢圓C的方程.
(2)設(shè)D(x0,y0),則$\frac{{x}_{0}^{2}}{4}$+$\frac{{y}_{0}^{2}}{2}$=1.把y=m代入橢圓方程可得:A(-$\sqrt{4-2{m}^{2}}$,m),B($\sqrt{4-2{m}^{2}}$,m).利用點斜式可得:直線DA的方程與直線DB的方程,可得P,Q的坐標(biāo).利用斜率公式只要證明${k}_{P{F}_{1}}$•${k}_{Q{F}_{1}}$=1即可得出.
解答 (1)解:由題意可得:e=$\frac{\sqrt{2}}{2}$=$\frac{c}{a}$,2a+2c=4+2$\sqrt{2}$,又a2=b2+c2.
聯(lián)立解得:a=2,b=c=$\sqrt{2}$.
∴橢圓C的方程為:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)解:∠PF1F2+∠QF1F2=90°.
下面給出證明:F1$(-\sqrt{2},0)$.
設(shè)D(x0,y0),則$\frac{{x}_{0}^{2}}{4}$+$\frac{{y}_{0}^{2}}{2}$=1.
把y=m代入橢圓方程可得:$\frac{{x}^{2}}{4}$+$\frac{{m}^{2}}{2}$=1,解得x=±$\sqrt{4-2{m}^{2}}$.
取A(-$\sqrt{4-2{m}^{2}}$,m),B($\sqrt{4-2{m}^{2}}$,m).
直線DA的方程為:y-y0=$\frac{m-{y}_{0}}{-\sqrt{4-2{m}^{2}}-{x}_{0}}$(x-x0),可得P$(0,\frac{(m-{y}_{0}){x}_{0}}{\sqrt{4-2{m}^{2}}+{x}_{0}}+{y}_{0})$.
同理可得:直線DB的方程為:y-y0=$\frac{m-{y}_{0}}{\sqrt{4-2{m}^{2}}-{x}_{0}}$(x-x0),可得Q$(0,\frac{-{x}_{0}(m-{y}_{0})}{\sqrt{4-2{m}^{2}}-{x}_{0}}+{y}_{0})$.
∴${k}_{P{F}_{1}}$=$\frac{m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}+{x}_{0})}$,
${k}_{Q{F}_{1}}$=$\frac{-m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}-{x}_{0})}$.
又${y}_{0}^{2}$=2-$\frac{{x}_{0}^{2}}{2}$.
∴${k}_{P{F}_{1}}$•${k}_{Q{F}_{1}}$=$\frac{m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}+{x}_{0})}$•$\frac{-m{x}_{0}+{y}_{0}\sqrt{4-2{m}^{2}}}{\sqrt{2}(\sqrt{4-2{m}^{2}}-{x}_{0})}$=$\frac{{y}_{0}^{2}(4-2{m}^{2})-{m}^{2}{x}_{0}^{2}}{2(4-2{m}^{2}-{x}_{0}^{2})}$=$\frac{(2-\frac{{x}_{0}^{2}}{2})(4-2{m}^{2})-{m}^{2}{x}_{0}^{2}}{2(4-2{m}^{2}-{x}_{0}^{2})}$=1.
∴∠PF1F2+∠QF1F2=90°.
點評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題、直線方程、斜率計算公式、點與橢圓的位置關(guān)系,考查了探究能力、推理能力與計算能力,屬于難題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-3<x<-1} | B. | {x|-3<x<0} | C. | {x|-1≤x<0} | D. | {x|x<-3} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com