【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,以極軸所在直線為軸建立直角坐標(biāo)系,曲線分別與軸正半軸和軸正半軸交于點,,為直線上任意一點,點在射線上運動,且.
(1)求曲線的直角坐標(biāo)方程;
(2)求點軌跡圍成的面積.
【答案】(1)(2).
【解析】
(1)根據(jù)極坐標(biāo)與平面直角坐標(biāo)之間的關(guān)系即可求解.
(2)由(1)知,,則可求直線的極坐標(biāo)方程為,在極坐標(biāo)系中,設(shè),,則,點在直線上,代入與Q點關(guān)系即可得到Q的軌跡方程,化簡并轉(zhuǎn)化為直角坐標(biāo)方程可得軌跡為圓,求圓面積即可.
(1)∵,∴.
由得,
∴曲線的直角坐標(biāo)方程.
(2)由(1)知,,
則直線的直角坐標(biāo)方程為,
極坐標(biāo)方程為.
在極坐標(biāo)系中,設(shè),,則.
∵點在直線上,∴,
∴,
即,即.
∴點軌跡的直角坐標(biāo)方程為,
即,
∴點的軌跡為半徑為的圓,圓的面積為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=BC=4,BB1=2,點E、F、M分別為C1D1,A1D1,B1C1的中點,過點M的平面α與平面DEF平行,且與長方體的面相交,交線圍成一個幾何圖形.
(1)在圖1中,畫出這個幾何圖形,并求這個幾何圖形的面積(不必說明畫法與理由)
(2)在圖2中,求證:D1B⊥平面DEF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列中,,且.
(1)的通項公式為__________;
(2)在、、、、這項中,被除余的項數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)寫出的普通方程和的直角坐標(biāo)方程;
(2)若與相交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“猜想”是指對于每一個正整數(shù),若為偶數(shù),則讓它變成;若為奇數(shù),則讓它變成.如此循環(huán),最終都會變成,若數(shù)字按照以上的規(guī)則進行變換,則變換次數(shù)為偶數(shù)的頻率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請120名同學(xué)每人隨機寫下一個x,y都小于1的正實數(shù)對,再統(tǒng)計其中x,y能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結(jié)果是,那么可以估計的值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線.
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當(dāng)圓的半徑最長時,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一款擊鼓小游戲的規(guī)則如下:每盤游戲都需擊鼓三次,每次擊鼓后要么出現(xiàn)一次音樂,要么不出現(xiàn)音樂;每盤游戲擊鼓三次后,出現(xiàn)三次音樂獲得150分,出現(xiàn)兩次音樂獲得100分,出現(xiàn)一次音樂獲得50分,沒有出現(xiàn)音樂則獲得-300分.設(shè)每次擊鼓出現(xiàn)音樂的概率為,且各次擊鼓出現(xiàn)音樂相互獨立.
(1)若一盤游戲中僅出現(xiàn)一次音樂的概率為,求的最大值點;
(2)以(1)中確定的作為的值,玩3盤游戲,出現(xiàn)音樂的盤數(shù)為隨機變量,求每盤游戲出現(xiàn)音樂的概率,及隨機變量的期望;
(3)玩過這款游戲的許多人都發(fā)現(xiàn),若干盤游戲后,與最初的分?jǐn)?shù)相比,分?jǐn)?shù)沒有增加反而減少了.請運用概率統(tǒng)計的相關(guān)知識分析分?jǐn)?shù)減少的原因.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車是碳排放量比較大的行業(yè)之一,歐盟規(guī)定,從2015年開始,將對排放量超過130g/km的型新車進行懲罰(視為排放量超標(biāo)),某檢測單位對甲、乙兩類型品牌抽取5輛進行排放量檢測,記錄如下(單位:g/km):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | x | y | 160 |
經(jīng)測算發(fā)現(xiàn),乙品牌車排放量的平均值為.
(Ⅰ)從被檢測的5輛甲類品牌中任取2輛,則至少有一輛排放量超標(biāo)的概率是多少?
(Ⅱ)若乙類品牌的車比甲類品牌的的排放量的穩(wěn)定性要好,求x的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com