【題目】關(guān)于圓周率,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多有創(chuàng)意的求法,如著名的普豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請120名同學(xué)每人隨機寫下一個xy都小于1的正實數(shù)對,再統(tǒng)計其中xy能與1構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù)m,最后根據(jù)統(tǒng)計個數(shù)m估計的值.如果統(tǒng)計結(jié)果是,那么可以估計的值為( )

A.B.C.D.

【答案】B

【解析】

由試驗結(jié)果知12001之間的均勻隨機數(shù),滿足,面積為1,兩個數(shù)能與1構(gòu)成鈍角三角形三邊的數(shù)對,滿足, ,面積為,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,二者相等即可估計π的值.

由題意,120名同學(xué)隨機寫下的實數(shù)對落在由的正方形內(nèi),其面積為1

兩個數(shù)能與1構(gòu)成鈍角三角形應(yīng)滿足,

此為一弓形區(qū)域,其面積為.由題意,解得,故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點到定點的距離之和為4.

(1)求動點的軌跡方程

(2)若軌跡與直線交于兩點,且的值.

(3)若點與點在軌跡上,且點在第一象限,點在第二象限,點與點關(guān)于原點對稱,求證:當(dāng)時,三角形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已過拋物線的焦點作直線交拋物線,兩點,以,兩點為切點作拋物線的切線,兩條直線交于點.

1)當(dāng)直線平行于軸時,求點的坐標(biāo);

2)當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,數(shù)列的前n項和為,且;數(shù)列的前n項和為,且滿足,且.

1)求數(shù)列的通項公式;

2)求數(shù)列的通項公式;

3)設(shè),問:數(shù)列中是否存在不同兩項,i),使仍是數(shù)列中的項?若存在,請求出i,j;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,以極軸所在直線為軸建立直角坐標(biāo)系,曲線分別與軸正半軸和軸正半軸交于點,,為直線上任意一點,點在射線上運動,且

1)求曲線的直角坐標(biāo)方程;

2)求點軌跡圍成的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

1)寫出的普通方程和的直角坐標(biāo)方程;

2)若相交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,求的最大值;

(2)當(dāng)時,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三角形中,,平面與半圓弧所在的平面垂直,點為半圓弧上異于的動點,的中點.

1)求證:;

2)求三棱錐體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,曲線的極坐標(biāo)方程為,以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù), ).

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)若曲線上的動點到直線的最大距離為,求的值.

查看答案和解析>>

同步練習(xí)冊答案