已知x,y滿足不等式組
x-y≥0
x+2y≥0
x≤2
,則z=x-2y的最大值與最小值的和為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,進(jìn)行求最值即可.
解答: 解:由z=x-2y得y=
1
2
x-
z
2

作出不等式組對應(yīng)的平面區(qū)域如圖(陰影部分):
平移直線y=
1
2
x-
z
2
,
由圖象可知當(dāng)直線y=
1
2
x-
z
2
,過點A時,直線y=
1
2
x-
z
2
的截距最大,此時z最小,
x=2
x-y=0
,解得
x=2
y=2
,即A(2,2).
代入目標(biāo)函數(shù)z=x-2y,
得z=2-4=-2.
∴目標(biāo)函數(shù)z=x-2y的最小值是-2.
經(jīng)過點C時,直線y=
1
2
x-
z
2
的截距最小,此時z最大,
x=2
x+2y=0
,解得
x=2
y=-1
,即C(2,-1).
代入目標(biāo)函數(shù)z=x-2y,
得z=2+2=4
∴目標(biāo)函數(shù)z=x-2y的最小值是4.
則z=x-2y的最大值與最小值的和為4-2=2.
故答案為:2
點評:本題主要考查線性規(guī)劃的基本應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決問題的關(guān)鍵,利用數(shù)形結(jié)合是解決問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知:在任意四邊形ABCD中,E,F(xiàn)分別是AD,DC的中點,求證:
EF
=
1
2
AB
+
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是平行四邊形,PA⊥平面ABCD,且PA=AD=2,AB=1,AC=
3

(1)證明:CD⊥平面PAC;
(2)求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

小輝是一位收藏愛好者,在第1年初購買了價值為20萬元的收藏品M,由于受到收藏品市場行情的影響,第2年、第3年的每年初M的價值為上年初的
1
2
;從第4年開始,每年初M的價值比上年初增加4萬元.
(Ⅰ)求第幾年初開始M的價值超過原購買的價值;
(Ⅱ)記Tn(n∈N*)表示收藏品M前n年的價值的平均值,求Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從一副去掉大小怪的撲克牌(52張)中任取4張牌,求取到下列各式牌的概率:
(1)黑桃,紅桃,梅花,方塊各一張;
(2)4張牌點數(shù)相同;
(3)4張黑桃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心角為135°,面積為B的扇形圍成一個圓錐,若圓錐的全面積為A,則A:B等于(  )
A、11:8B、3:8
C、8:3D、13:8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β為非零實數(shù)),f(2013)=5,求f(0)+f(1)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若{an}為等比數(shù)列,公比為q,則數(shù)列{
1
an
},{an2},{
an
}(an>0),{lgan}(an>0),{2 an},哪些是等比數(shù)列?如果是,公比是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-2,求:2sin2α+2sinαcosα+3cos2α.

查看答案和解析>>

同步練習(xí)冊答案