【題目】已知函數(shù),其中為常數(shù),且.
(1)若是奇函數(shù),求的取值集合;
(2)當(dāng)時(shí),設(shè)的反函數(shù),且的圖象與的圖象關(guān)于對(duì)稱(chēng),求的取值集合;
(3)對(duì)于問(wèn)題(1)(2)中的、,當(dāng)時(shí),不等式恒成立,求的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)由求出實(shí)數(shù)的值,然后檢驗(yàn)此時(shí)函數(shù)為奇函數(shù),由此可得出集合;
(2)當(dāng)時(shí),由得,解得,可得出,然后解出方程可得出集合;
(3)原問(wèn)題轉(zhuǎn)化為,恒成立,可得出或,由此能求出實(shí)數(shù)的取值范圍.
(1)由于函數(shù)為奇函數(shù),且定義域?yàn)?/span>,則,
,,
由題意得,整理得,解得或.
,,則,定義域?yàn)?/span>,關(guān)于原點(diǎn)對(duì)稱(chēng),
,
此時(shí),函數(shù)為奇函數(shù),合乎題意,因此,;
(2)當(dāng)時(shí),由得,可得,得,
,所以,,
由于的圖象與的圖象關(guān)于對(duì)稱(chēng),
則為方程的實(shí)數(shù)解,解方程,即,
變形得,解得,即,因此,;
(3)令,
原問(wèn)題轉(zhuǎn)化為在上恒成立,
則或,
即或,解得.
因此,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給定橢圓C:(),稱(chēng)圓心在原點(diǎn)O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點(diǎn)在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作直線,使得,與橢圓C都只有一個(gè)交點(diǎn),且,分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某居民區(qū)有一個(gè)銀行網(wǎng)點(diǎn)(以下簡(jiǎn)稱(chēng)“網(wǎng)點(diǎn)”),網(wǎng)點(diǎn)開(kāi)設(shè)了若干個(gè)服務(wù)窗口,每個(gè)窗口可以辦理的業(yè)務(wù)都相同,每工作日開(kāi)始辦理業(yè)務(wù)的時(shí)間是8點(diǎn)30分,8點(diǎn)30分之前為等待時(shí)段.假設(shè)每位儲(chǔ)戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率都相等,且每位儲(chǔ)戶是否在該時(shí)段到網(wǎng)點(diǎn)相互獨(dú)立.根據(jù)歷史數(shù)據(jù),統(tǒng)計(jì)了各工作日在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù),得到如圖所示的頻率分布直方圖:
(1)估計(jì)每工作日等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲(chǔ)戶人數(shù)的平均值;
(2)假設(shè)網(wǎng)點(diǎn)共有1000名儲(chǔ)戶,將頻率視作概率,若不考慮新增儲(chǔ)戶的情況,解決以下問(wèn)題:
①試求每位儲(chǔ)戶在等待時(shí)段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率;
②儲(chǔ)戶都是按照進(jìn)入網(wǎng)點(diǎn)的先后順序,在等候人數(shù)最少的服務(wù)窗口排隊(duì)辦理業(yè)務(wù).記“每工作日上午8點(diǎn)30分時(shí)網(wǎng)點(diǎn)每個(gè)服務(wù)窗口的排隊(duì)人數(shù)(包括正在辦理業(yè)務(wù)的儲(chǔ)戶)都不超過(guò)3”為事件,要使事件的概率不小于0.75,則網(wǎng)點(diǎn)至少需開(kāi)設(shè)多少個(gè)服務(wù)窗口?
參考數(shù)據(jù):;;
;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已如橢圓E:()的離心率為,點(diǎn)在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過(guò)點(diǎn),且與E交于P,Q兩點(diǎn),試問(wèn):是否存在定點(diǎn)C,使得?若存在,求C的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)對(duì)任意的,恒成立,請(qǐng)求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半圓:,、分別為半圓與軸的左、右交點(diǎn),直線過(guò)點(diǎn)且與軸垂直,點(diǎn)在直線上,縱坐標(biāo)為,若在半圓上存在點(diǎn)使,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對(duì)于函數(shù),若存在,使成立,則稱(chēng)為函數(shù)的不動(dòng)點(diǎn).如果函數(shù)存在不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)對(duì)某市工薪階層關(guān)于“樓市限購(gòu)令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們?cè)率杖氲念l數(shù)分布及對(duì)“樓市限購(gòu)令”贊成人數(shù)如表:
月收入(單位百元) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表并問(wèn)是否有99%的把握認(rèn)為“月收入以5500為分界點(diǎn)”對(duì)“樓市限購(gòu)令”的態(tài)度有差異;
月收入低于55百元的人數(shù) | 月收入不低于55百元的人數(shù) | 合計(jì) | |
贊成 | |||
不贊成 | |||
合計(jì) |
(Ⅱ)若采用分層抽樣在月收入在[15,25),[25,35)的被調(diào)查人中共隨機(jī)抽取6人進(jìn)行追蹤調(diào)查,并給予其中3人“紅包”獎(jiǎng)勵(lì),求收到“紅包”獎(jiǎng)勵(lì)的3人中至少有1人收入在[15,25)的概率.
參考公式:K2,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com