當(dāng)變化時,點P(,+1)運動的軌跡方程是________.

答案:
解析:

=1

=1


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試安徽卷理數(shù) 題型:044

設(shè)橢圓的焦點在x軸上

(Ⅰ)若橢圓E的焦距為1,求橢圓E的方程;

(Ⅱ)設(shè)F1,F(xiàn)2分別是橢圓的左、右焦點,P為橢圓E上的第一象限內(nèi)的點,直線F2P交y軸與點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點p在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽 題型:解答題

設(shè)橢圓E:
x2
a2
+
y2
1-a2
=1
的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年安徽省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓E:的焦點在x軸上
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1,F(xiàn)2分別是橢圓E的左、右焦點,P為橢圓E上第一象限內(nèi)的點,直線F2P交y軸于點Q,并且F1P⊥F1Q,證明:當(dāng)a變化時,點P在某定直線上.

查看答案和解析>>

同步練習(xí)冊答案