9.已知f(x)是周期為4的奇函數(shù),x∈[0,2]時(shí),f(x)=$\sqrt{1-(x-1)^{2}}$.若方程f(x)-tx=0恰好有5個(gè)實(shí)根,則正實(shí)數(shù)t等于( 。
A.$\frac{1}{5}$B.$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{6}}{6}$

分析 根據(jù)函數(shù)奇偶性和周期性的關(guān)系求出函數(shù)的解析式,利用函數(shù)與方程的關(guān)系轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)個(gè)數(shù)問題,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:若x∈[-2,0],則-x∈[0,2],
則f(-x)=$\sqrt{1-(-x-1)^{2}}$,
∵f(x)是周期為4的奇函數(shù),
∴f(-x)=$\sqrt{1-(-x-1)^{2}}$=-f(x)
即f(x)=-$\sqrt{1-(x+1)^{2}}$,x∈[-2,0],
由f(x)-tx=0得f(x)=tx,
作出函數(shù)f(x)與g(x)=tx的圖象如圖:
要使方程f(x)-tx=0恰好有5個(gè)實(shí)根,
則只需要當(dāng)x>0時(shí)f(x)與g(x)有兩個(gè)交點(diǎn),
即當(dāng)x∈[4,6]時(shí),g(x)與f(x)相切,即可.
當(dāng)當(dāng)x∈[4,6]時(shí),當(dāng)x-4∈[0,2],
則f(x)=f(x-4)=$\sqrt{1-(x-4-1)^{2}}$=$\sqrt{1-(x-5)^{2}}$,此時(shí)圓心為(5,0),半徑R=1,
則圓心到直線tx-y=0的距離d=$\frac{5t}{\sqrt{{t}^{2}+1}}$=1,
得t=$\frac{\sqrt{6}}{12}$,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,利用函數(shù)奇偶性和周期性的關(guān)系求出函數(shù)的解析式,轉(zhuǎn)化為兩個(gè)函數(shù)的交點(diǎn)問題是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)復(fù)數(shù)z滿足(z-1)(1+i)=2(i為虛數(shù)單位),則|z|=( 。
A.1B.5C.$\sqrt{5}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,實(shí)軸的兩個(gè)端點(diǎn)分別為A1、A2,虛軸的兩個(gè)端點(diǎn)分別為B1、B2,若在線段B1F2上,存在兩點(diǎn)M、N(點(diǎn)M、N異于B1、F2),使得∠A1MA2=∠A1NA2=90°,則雙曲線離心率e的取值范圍為$\sqrt{2}$<e<$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函數(shù)$f(x)=\overrightarrow m•\overrightarrow n,x∈[{0,π}]$,求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,z1=1+2i,i為虛數(shù)單位.則z1z2=( 。
A.3B.-5C.-5iD.-1-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.有下列命題:
(1)$\sqrt{3}$$+\sqrt{7}$<2+$\sqrt{6}$;
(2)若a≥b>0,n∈N*,且n≥2,則有$\root{n}{a}$≥$\root{n}$;
(3)1+3+5+…+(2n-1)=n2(n∈N*);
(4)nn+1>(n+1)n對(duì)-切n∈N*且n≥3恒成立.
以上命題適合使用數(shù)學(xué)歸納法證明的序號(hào)是(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是鈍角三角形,則該雙曲線的離心率的取值范圍是( 。
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知tanα=1,那么$\frac{sinα-2cosα}{3sinα+cosα}$=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知點(diǎn)A(x1,y1),B(x2,y2),分別求A,B關(guān)于點(diǎn)M(x0,y0)的中心對(duì)稱點(diǎn)A′,B′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案