【題目】設(shè)f(x)是定義在[﹣1,1]上的奇函數(shù),且對任意a、b∈[﹣1,1],當(dāng)a+b≠0時(shí),都有 >0.
(1)若a>b,比較f(a)與f(b)的大。
(2)解不等式f(x﹣ )<f(x﹣ );
(3)記P={x|y=f(x﹣c)},Q={x|y=f(x﹣c2)},且P∩Q=,求c的取值范圍.
【答案】
(1)解:設(shè)﹣1≤x1<x2≤1,則x1﹣x2≠0,
∴ >0.
∵x1﹣x2<0,∴f(x1)+f(﹣x2)<0.
∴f(x1)<﹣f(﹣x2).
又f(x)是奇函數(shù),∴f(﹣x2)=﹣f(x2).
∴f(x1)<f(x2).
∴f(x)是增函數(shù).
∵a>b,∴f(a)>f(b)
(2)解:由f(x﹣ )<f(x﹣ ),得 ∴﹣ ≤x≤ .
∴不等式的解集為{x|﹣ ≤x≤ }.
(3)解:由﹣1≤x﹣c≤1,得﹣1+c≤x≤1+c,
∴P={x|﹣1+c≤x≤1+c}.
由﹣1≤x﹣c2≤1,得﹣1+c2≤x≤1+c2,
∴Q={x|﹣1+c2≤x≤1+c2}.
∵P∩Q=,
∴1+c<﹣1+c2或﹣1+c>1+c2,
解得c>2或c<﹣1
【解析】先判斷函數(shù)的單調(diào)性.(1)由函數(shù)的單調(diào)性即可求解.(2)(3)由函數(shù)的定義域及函數(shù)的單調(diào)性求解.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法和函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較;函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
直角坐標(biāo)系中曲線的參數(shù)方程(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中, 點(diǎn)的極坐標(biāo),在平面直角坐標(biāo)系中,直線經(jīng)過點(diǎn),傾斜角為
(1)寫出曲線的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若對任意x1∈R,都存在x2∈[﹣2,+∞),使得f(x1)>g(x2),則實(shí)數(shù)a的取值范圍是( )
A.
B.(0,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線y=x+b與曲線 有公共點(diǎn),則b的取值范圍是( )
A.[ , ]
B.[ ,3]
C.[﹣1, ]
D.[ ,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (α為參數(shù),﹣π<α<0),曲線C2的參數(shù)方程為 (t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C1的極坐標(biāo)方程和曲線C2的普通方程;
(2射線θ=﹣ 與曲線C1的交點(diǎn)為P,與曲線C2的交點(diǎn)為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來決定具體安排,通過調(diào)查,有關(guān)數(shù)據(jù)如表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本、搭載費(fèi)用之和(萬元) | 20 | 30 | 計(jì)劃最大資金額300萬元 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預(yù)計(jì)收益(萬元) | 80 | 60 |
試問:如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位: )有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶,為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | ||||||
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;
(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元).當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時(shí), 的數(shù)學(xué)期望達(dá)到最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有8名奧運(yùn)會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個(gè)小組.
(Ⅰ)求 被選中的概率;
(Ⅱ)求 和 不全被選中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(I)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,能否判斷數(shù)學(xué)成績與性別有關(guān);
(II)規(guī)定80分以上為優(yōu)分(含80分),請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”. (,其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com