7.i是虛數(shù)單位,若復(fù)數(shù)z滿足zi=-1+i,則復(fù)數(shù)z的共軛復(fù)數(shù)是( 。
A.1-iB.1+iC.-1+iD.-1-i

分析 由已知等式求出z,再由共軛復(fù)數(shù)的概念求得$\overline{z}$.

解答 解:由zi=-1+i,得$z=\frac{-1+i}{i}=\frac{(-1+i)(-i)}{-{i}^{2}}=1+i$,
∴$\overline{z}=1-i$,
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若命題p:{x|log2(x-1)<0}命題 q:{x|x<3},則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.規(guī)定[t]為不超過(guò)t的最大整數(shù),例如[12.5]=12,[-3.5]=-4,對(duì)任意的實(shí)數(shù)x,令f1(x)=[4x],g(x)=4x-[4x],進(jìn)一步令f2(x)=f1[g(x)].
(1)若x=$\frac{7}{16}$,分別求f1(x) 和f2(x);
(2)若f1(x)=1,f2(x)=3同時(shí)滿足,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.若一個(gè)冪函數(shù)和一個(gè)指數(shù)函數(shù)圖象的一個(gè)交點(diǎn)是(2,4),則它們圖象的另一個(gè)交點(diǎn)為(4,16).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρcos2θ=2sinθ,它在點(diǎn)$M(2\sqrt{2},\frac{π}{4})$處的切線為直線l.
(1)求直線l的直角坐標(biāo)方程;
(2)已知點(diǎn)P為橢圓$\frac{x^2}{3}+\frac{y^2}{4}$=1上一點(diǎn),求點(diǎn)P到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax(a為常數(shù)),f′(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x>0時(shí),求證:f(lna+x)>f(lna-x);
(Ⅲ)已知f(x)有兩個(gè)零點(diǎn)x1,x2(x1<x2),求證:${f^/}({\frac{{{x_1}+{x_2}}}{2}})<0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若△ABC的三個(gè)內(nèi)角滿足tanAtanBtanC>0,則△ABC是(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.任意三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.酒后違法駕駛機(jī)動(dòng)車危害巨大,假設(shè)駕駛?cè)藛T血液中的酒精含量為Q(簡(jiǎn)稱血酒含量,單位是毫克/100毫升),當(dāng)20≤Q≤80時(shí),為酒后駕車;當(dāng)Q>80時(shí),為醉酒駕車.如圖為某市交管部門在一次夜間行動(dòng)中依法查出的60名飲酒后違法駕駛機(jī)動(dòng)車者抽血檢測(cè)后所得頻率分布直方圖(其中120≤Q<140人數(shù)包含Q≥140).
( I)求查獲的醉酒駕車的人數(shù);
( II)從違法駕車的60人中按酒后駕車和醉酒駕車?yán)梅謱映闃映槿?人做樣本進(jìn)行研究,再?gòu)某槿〉?人中任取3人,求3人中含有醉酒駕車人數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知tanα=-$\frac{1}{2}$,求$\frac{1+2sin(π-α)cos(-2π-α)}{si{n}^{2}α-si{n}^{2}(\frac{5π}{2}-α)}$+$\frac{1}{3}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案