1.已知四邊形MNPQ的頂點(diǎn)M(1,1),N(3,-1),P(4,0),Q(2,2),
(1)求斜率kMN與kPQ,并判斷直線MN與直線PQ的位置關(guān)系.
(2)求直線PQ的方程.

分析 (1)由兩點(diǎn)的坐標(biāo)求得kMN=-1,kPQ,=-1,可得兩直線平行;
(2)直接由直線方程的點(diǎn)斜式求得直線PQ的方程.

解答 解:(1)∵M(jìn)(1,1),N(3,-1),P(4,0),Q(2,2),
∴${k}_{MN}=\frac{-1-1}{3-1}=-1$
,${k}_{PQ}=\frac{2-0}{2-4}=-1$,則kMN=kPQ,
又MNPQ為四邊形,
∴直線MN與直線PQ平行;
(2)∵${k}_{PQ}=\frac{2-0}{2-4}=-1$,P(4,0),
由直線方程的點(diǎn)斜式可得PQ:y-0=-1×(x-4),即x+y-4=0.

點(diǎn)評(píng) 本題考查由兩點(diǎn)坐標(biāo)求直線的斜率,考查直線方程的點(diǎn)斜式,訓(xùn)練了兩直線平行與斜率的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)集合A={x|x2-4x+3=0},B={x|x2-5x+4=0},集合A∪B為( 。
A.{1}B.{1,3}C.{1,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E,F(xiàn)分別是AB,PD的中點(diǎn).
(1)求證:AF∥平面PEC;
(2)求PC與平面PAD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列關(guān)于算法的說(shuō)法中,正確的是(  )
A.算法是某個(gè)問(wèn)題的解決過(guò)程B.算法執(zhí)行后可以不產(chǎn)生確定的結(jié)果
C.解決某類(lèi)問(wèn)題的算法不是唯一的D.算法可以無(wú)限的操作下去不停止

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),$\overrightarrow c$=(-1,0)
(1)求向量$\overrightarrow b+\overrightarrow c$的長(zhǎng)度的最大值;
(2)設(shè)α=$\frac{π}{4}$,β∈(0,π),且$\overrightarrow a$⊥($\overrightarrow b$+$\overrightarrow c$),求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)g(x)=$\sqrt{2{x^2}-3x+1}$,則函數(shù)g(x)的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,$\frac{1}{2}$]∪[2,+∞)B.[$\frac{1}{2}$,1]C.(-∞,$\frac{1}{2}$]∪[1,+∞)D.(-∞,-1]∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC⊥AB且AA1=AC=AB,則直線AC1與直線A1B所成的角等于(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線2x-5y=1的極坐標(biāo)方程為2ρcosθ-5ρsinθ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.將兩粒大小相同均勻的骰子各拋擲一次,觀察向上的點(diǎn)數(shù)之和.
(1)用列表的方法列出所有可能結(jié)果,共有多少種可能結(jié)果?
(2)點(diǎn)數(shù)之和是6和7的概率是多少?
(3)點(diǎn)數(shù)之和是3的倍數(shù)的概率是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案