8.若(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,則$\frac{{a}_{3}}{{a}_{2}}$=-2.

分析 由通項(xiàng)公式可得:Tr+1=${∁}_{5}^{r}$(-2x)r=(-2)r${∁}_{5}^{r}$xr,分別令r=3,r=2,即可得出.

解答 解:由通項(xiàng)公式可得:Tr+1=${∁}_{5}^{r}$(-2x)r=(-2)r${∁}_{5}^{r}$xr,令r=3,則a3=$(-2)^{3}{∁}_{5}^{3}$=-80;令r=2,則a2=$(-2)^{2}{∁}_{5}^{2}$=40.
∴$\frac{{a}_{3}}{{a}_{2}}$=$\frac{-80}{40}$=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a⊥({\overrightarrow a+\overrightarrow b})$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1中,D是AA1的中點(diǎn),E為BC的中點(diǎn).
(Ⅰ)求證:直線AE∥平面BC1D;
(Ⅱ)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求點(diǎn)E到平面BC1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=alnx+x2-ax(a∈R).
(1)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(2)求g(x)=f(x)-2x在區(qū)間[1,e]的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=$\sqrt{2}$sinωx+$\sqrt{2}$cosωx(ω>0),在區(qū)間(-$\frac{π}{3}$,$\frac{π}{4}$)上單調(diào)遞增,則ω的取值范圍為( 。
A.(0,1]B.[1,2)C.[$\frac{1}{3}$,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在斜三梭柱ABC-A1B1C1中,側(cè)面AA1C1C是菱形,AC1與A1C交于點(diǎn)O,E是棱AB上一點(diǎn),且OE∥平面BCC1B1
(1)求證:E是AB中點(diǎn);
(2)若AC1⊥A1B,求證:AC1⊥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知變量x與y的取值如表所示,且2.5<n<m<6.5,則由該數(shù)據(jù)算得的線性回歸方程可能是( 。
x 2 3 4 5
 y 6.5 m n2.5
A.$\stackrel{∧}{y}$=0.8x+2.3B.$\stackrel{∧}{y}$=2x+0.4C.$\stackrel{∧}{y}$=-1.5x+8D.$\stackrel{∧}{y}$=-1.6x+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知某企業(yè)的近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線圖所示:

(1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)較高?
(2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);
(3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第3年8月份的利潤(rùn).
月份x1234
利潤(rùn)y(單位:百萬(wàn)元)4466
相關(guān)公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若點(diǎn)P為△ABC某兩邊的垂直平分線的交點(diǎn),且$\overrightarrow{PA}+\overrightarrow{PB}-\overrightarrow{PC}=\overrightarrow 0$,則∠ACB=( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案