4.在數(shù)列{an}中,a1=1,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n≥2)$,則a4=( 。
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{7}{4}$D.$\frac{8}{5}$

分析 利用數(shù)列的遞推關(guān)系式,逐步求解即可.

解答 解:在數(shù)列{an}中,a1=1,${a_n}=1+\frac{1}{{{a_{n-1}}}}(n≥2)$,
則a2=1+1=2,
a3=1+$\frac{1}{2}$=$\frac{3}{2}$.
a4=1+$\frac{2}{3}$=$\frac{5}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=-x3+2x2-x,則過(guò)點(diǎn)A(1,9)可以做曲線y=f(x)的幾條切線( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$cos(\frac{π}{3}+α)=\frac{1}{3}$,則$sin(\frac{5}{6}π+α)$=( 。
A..$\frac{1}{3}$B.$-\frac{1}{3}$C..$\frac{{2\sqrt{2}}}{3}$D..$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$cos({\frac{π}{4}-θ})=\frac{{\sqrt{2}}}{10}$,且θ∈(0,π).
(1)求$sin({\frac{π}{4}+θ})$的值;
(2)求sin4θ-cos4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.對(duì)大于1的自然數(shù)m的三次冪可用奇數(shù)進(jìn)行以下方式的“分裂”:23$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$…仿此,若m3的“分裂”數(shù)中有一個(gè)是47,則m的值為( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知數(shù)列{an}中,a1=0,a2=p(p是不等于0的常數(shù)),Sn為數(shù)列{an}的前n項(xiàng)和,若對(duì)任意的正整數(shù)n都有Sn=$\frac{n{a}_{n}}{2}$,則數(shù)列{an}通項(xiàng)為an=p(n-1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某商品在銷(xiāo)售過(guò)程中投入的銷(xiāo)售時(shí)間x與銷(xiāo)售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
銷(xiāo)售時(shí)間x(月)12345
銷(xiāo)售額y(萬(wàn)元)0.40.50.60.60.4
用線性回歸分析的方法預(yù)測(cè)該商品6月份的銷(xiāo)售額.
(參考公式:$\widehat$=$\frac{{\sum_{i=1}^n{\;}({x_i}-_x^-)({y_i}-_y^-)}}{{\sum_{i=1}^n{\;}{{({x_i}-_x^-)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示樣本平均值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若$sinα+cosα=\sqrt{2}$,則$sin(α+\frac{π}{3})$=$\frac{\sqrt{2}+\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線l過(guò)點(diǎn)P(1,2),且與x軸、y軸的正半軸分別交于A,B兩點(diǎn),則當(dāng)△AOB的面積取得最小值時(shí),直線l的方程為( 。
A.2x+y-4=0B.x-2y+3=0C.x+y-3=0D.x-y+1=0

查看答案和解析>>

同步練習(xí)冊(cè)答案