【題目】已知指數(shù)函數(shù)y=g(x)滿足g(3)=8,又定義域?yàn)閷?shí)數(shù)集R的函數(shù)f(x)= 是奇函數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)若對(duì)任意的t∈R,不等式f(2t﹣3t2)+f(t2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
【答案】
(1)解:設(shè)g(x)=ax,(a>0且a≠1),g(3)=a3=8,
故a=2,f(x)= ,
任取實(shí)數(shù)x1<x2,
則f(x1)﹣f(x2)
= ﹣
= ,
∵x1<x2,考慮y=2x在R遞增,
∴ > >0,
∴ ﹣ >0,(1+ )(1+ )>0,
∴f(x1)>f(x2),
∴y=f(x)在R遞減;
(2)解:要使f(2t﹣3t2)+f(t2﹣k)>0恒成立,
即f(2t﹣3t2)>﹣f(t2﹣k)成立,
即f(2t﹣3t2)>f(k﹣t2)成立,
由(1)得:2t﹣3t2<k﹣t2,即k>﹣2t2+2t恒成立,
設(shè)h(t)=﹣2t2+2t=﹣2 + ,
h(t)max= ,
故k> .
【解析】(1)根據(jù)g(3)=a3=8,求出a的值,從而求出f(x)的解析式,根據(jù)函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性即可;(2)根據(jù)函數(shù)f(x)的單調(diào)性和奇偶性得到2t﹣3t2<k﹣t2,即k>﹣2t2+2t恒成立,設(shè)h(t)=﹣2t2+2t=﹣2 + ,根據(jù)二次函數(shù)的性質(zhì)求出k的范圍即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:9x2+y2=m2(m>0),直線l不過原點(diǎn)O且不平行于坐標(biāo)軸,l與C有兩個(gè)交點(diǎn)A,B,線段AB的中點(diǎn)為M.
(1)證明:直線OM的斜率與l的斜率的乘積為定值;
(2)若l過點(diǎn)( ,m),延長線段OM與C交于點(diǎn)P,四邊形OAPB能否為平行四邊形?若能,求此時(shí)l的斜率;若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:x2﹣4ax+3a2<0(其中a>0,x∈R),命題q:﹣x2+5x﹣6≥0,x∈R.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)定義在區(qū)間(﹣1,1)內(nèi),對(duì)于任意的x,y∈(﹣1,1)有f(x)+f(y)=f( ),且當(dāng)x<0時(shí),f(x)>0.
(1)判斷這樣的函數(shù)是否具有奇偶性和單調(diào)性,并加以證明;
(2)若f(﹣ )=1,求方程f(x)+ =0的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在透明塑料制成的長方體ABCD﹣A1B1C1D1容器內(nèi)灌進(jìn)一些水,將容器底面一邊BC固定于地面上,再將容器傾斜,隨著傾斜度的不同,有下列四個(gè)說法: ①水的部分始終呈棱柱狀;
②水面四邊形EFGH的面積不改變;
③棱A1D1始終與水面EFGH平行;
④當(dāng)E∈AA1時(shí),AE+BF是定值.其中正確說法的是( )
A.②③④
B.①②④
C.①③④
D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點(diǎn)A(0,1)為直角頂點(diǎn),作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個(gè)符合條件的三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1﹣ (a>0且a≠1)是定義在R上的奇函數(shù). (Ⅰ)求a的值;
(Ⅱ)若關(guān)于x的方程|f(x)(2x+1)|=m有1個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=loga(ax+1)+mx是偶函數(shù).
(1)求m;
(2)當(dāng)a>1時(shí),若函數(shù)f(x)的圖象與直線l:y=﹣mx+n無公共點(diǎn),求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)P(m,n)的直線l與直線l0:x+2y+4=0垂直. (Ⅰ) 若 ,且點(diǎn)P在函數(shù) 的圖象上,求直線l的一般式方程;
(Ⅱ) 若點(diǎn)P(m,n)在直線l0上,判斷直線mx+(n﹣1)y+n+5=0是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com