18.已知f(x)是偶函數(shù),且在區(qū)間(-∞,0]上遞增,若$f({2^{2{x^2}-x-1}})≥f(-4)$,則x的取值范圍是( 。
A.$[-\frac{1}{2},1]$B.$[-1,\frac{3}{2}]$C.$(-∞,-1]∪[\frac{3}{2},+∞)$D.[-2,1]

分析 根據(jù)題意,由函數(shù)的奇偶性與單調(diào)性分析可得,$f({2^{2{x^2}-x-1}})≥f(-4)$?$f({2^{2{x^2}-x-1}})≥f(4)$?${2}^{2{x}^{2}-x-1}$≤4,結(jié)合指數(shù)函數(shù)的性質(zhì)可得2x2-x-1≤2,解可得x的取值范圍,即可得答案.

解答 解:根據(jù)題意,f(x)是偶函數(shù),則$f({2^{2{x^2}-x-1}})≥f(-4)$?$f({2^{2{x^2}-x-1}})≥f(4)$,
且在區(qū)間(-∞,0]上遞增,則函數(shù)在[0,+∞)上單調(diào)遞減,則$f({2^{2{x^2}-x-1}})≥f(4)$?${2}^{2{x}^{2}-x-1}$≤4,
而${2}^{2{x}^{2}-x-1}$≤4?${2}^{2{x}^{2}-x-1}$≤22,即2x2-x-1≤2,
解可得-1≤x≤$\frac{3}{2}$,即x的取值范圍是[-1,$\frac{3}{2}$],
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,涉及二次不等式的解法,關(guān)鍵是利用函數(shù)的奇偶性與單調(diào)性,將原問(wèn)題轉(zhuǎn)化為關(guān)于x的不等式求解問(wèn)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且b=$\sqrt{2}$a,$\sqrt{3}$cosB=$\sqrt{2}$cosA,c=$\sqrt{3}$+1,則△ABC的面積為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問(wèn)題:
組別分組頻數(shù)頻率
第1組[50,60)80.16
第2組[60,70)a
第3組[70,80)200.40
第4組[80,90)0.08
第5組[90,100]2b
合計(jì)
(1)寫(xiě)出a,b,x,y的值.
(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).
①求所抽取的2名同學(xué)中至少有1名同學(xué)的成績(jī)?cè)赱90,100]內(nèi)的概率;
②求所抽取的2名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知a>b,c∈R,則( 。
A.$\frac{1}{a}$<$\frac{1}$B.|a|>|b|C.a3>b3D.ac>bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,兩個(gè)工廠A,B相距8(單位:百米),O為AB的中點(diǎn),曲線段MN上任意一點(diǎn)P到A,B的距離之和為10(單位:百米),且MA⊥AB,NB⊥AB.現(xiàn)計(jì)劃在P處建一公寓,需考慮工廠A,B對(duì)它的噪音影響.工廠A對(duì)公寓的“噪音度”與距離AP成反比,比例系數(shù)為1;工廠B對(duì)公寓的“噪音度”與距離BP成反比,比例系數(shù)為k.“總噪音度”y是兩個(gè)工廠對(duì)公寓的“噪音度”之和.經(jīng)測(cè)算:當(dāng)P在曲線段MN的中點(diǎn)時(shí),“總噪音度”y恰好為1.
(Ⅰ)設(shè)AP=x(單位:百米),求“總噪音度”y關(guān)于x的函數(shù)關(guān)系式,并求出該函數(shù)的定義域;
(Ⅱ)當(dāng)AP為何值時(shí),“總噪音度”y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)$f(x)=\frac{{\;{2^x}}}{{\sqrt{1-x}}}+{log_3}(2x-1)$的定義域是( 。
A.$(\frac{1}{2}\;,\;1)$B.$[\frac{1}{2}\;,\;1)$C.(1,+∞)D.$(\frac{1}{2},\;1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(Ⅰ)求${(-\frac{7}{8})^0}+{(\frac{1}{8})^{-\;\;\frac{1}{3}}}+\root{4}{{{{(3-π)}^4}}}$的值;
(Ⅱ)求${7^{{{log}_7}2}}+lg25+2lg2-ln\sqrt{e^3}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知$α∈(\frac{5}{4}π\(zhòng);,\;\frac{3}{2}π)$,且滿足$tanα+\frac{1}{tanα}=8$,則sinαcosα=$\frac{1}{8}$;sinα-cosα=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=xsinx,則$f'({\frac{π}{4}})$=$\frac{\sqrt{2}}{2}+\frac{\sqrt{2}π}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案