10.(Ⅰ)求${(-\frac{7}{8})^0}+{(\frac{1}{8})^{-\;\;\frac{1}{3}}}+\root{4}{{{{(3-π)}^4}}}$的值;
(Ⅱ)求${7^{{{log}_7}2}}+lg25+2lg2-ln\sqrt{e^3}$的值.

分析 (I)利用指數(shù)運算性質(zhì)即可得出.
(II)利用對數(shù)運算性質(zhì)即可得出.

解答 解:(I)原式=1+${2}^{-3×(-\frac{1}{3})}$+|π-3|=1+2+π-3=π.
(II)原式=2+lg(25×22)-$\frac{3}{2}$=2+2-$\frac{3}{2}$=$\frac{5}{2}$.

點評 本題考查了指數(shù)與對數(shù)運算性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.數(shù)列{an}為正項等比數(shù)列,且滿足a1+$\frac{1}{2}$a2=4,a32=$\frac{1}{4}$a2a6;設正項數(shù)列{bn}的前n項和為Sn,且滿足Sn=$\frac{({_{n}+1)}^{2}}{4}$.
(1)求{an}和{bn}的通項公式;
(2)設cn=anbn,求數(shù)列{cn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=e2x-t,g(x)=tex-1,對任意x∈R,f(x)≥g(x)恒成立,則實數(shù)t的取值范圍為( 。
A.t≤1B.t≤2$\sqrt{2}$-2C.t≤2D.t≤2$\sqrt{3}$-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知f(x)是偶函數(shù),且在區(qū)間(-∞,0]上遞增,若$f({2^{2{x^2}-x-1}})≥f(-4)$,則x的取值范圍是( 。
A.$[-\frac{1}{2},1]$B.$[-1,\frac{3}{2}]$C.$(-∞,-1]∪[\frac{3}{2},+∞)$D.[-2,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若$sin(α-β)cosα-cos(α-β)sinα=\frac{3}{5}$,β是第四象限的角,則$sin(β+\frac{π}{4})$=( 。
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知集合$A=\left\{{y|y={x^2}-\frac{3}{2}x+1,x∈[{-\frac{1}{2},2}]}\right\},B=\left\{{x||{x-m}|≥1}\right\}$,若t∈A是t∈B的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若一個扇形的弧長是3,半徑是2,則該扇形的圓心角為( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.6D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)y=a+cosx在區(qū)間[0,2π]上有且只有一個零點,則a=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.復數(shù)z=$\frac{1+i}{i}$(i是虛數(shù)單位)的實部是1.

查看答案和解析>>

同步練習冊答案