已知x、y滿足
x+3y≤4
2x+y≤3
x≥0,y≥0
,則x+2y的最大值等于
 
分析:先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,只需求出直線z=x+2y過(guò)點(diǎn)A(1,1)時(shí),z最大值即可.
解答:精英家教網(wǎng)解:根據(jù)約束條件畫出可行域
直線z=x+2y過(guò)點(diǎn)A(1,1)時(shí),
z最大值3,
即目標(biāo)函數(shù)z=x+2y的最大值為3,
故答案為3.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足約束條件:2x-y≥0,x+y-2≥0,6x+3y≤18,且z=ax+y取得最大值的最優(yōu)解恰為(
32
,3),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足x=
3-(y-2)2
,則
y+1
x+
3
的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足
x-y≥-1
x+y≥1
3x-y≤3
,則z=2x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•淄博二模)已知x,y滿足
x≥1
x+y≤4
ax+by+c≤0
,且目標(biāo)函數(shù)3x+y的最大值為7,最小值為1,則
a+b+c
a
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M是滿足下列性質(zhì)的函數(shù)f(x)的全體:存在非零常數(shù)k,對(duì)定義域中的任意x,等式f(kx)=
k2
+f(x)恒成立.
(1)判斷一次函數(shù)f(x)=ax+b(a≠0)是否屬于集合M;
(2)證明函數(shù)f(x)=log2x屬于集合M,并找出一個(gè)常數(shù)k;
(3)已知函數(shù)f(x)=logax( a>1)與y=x的圖象有公共點(diǎn),證明f(x)=logax∈M.

查看答案和解析>>

同步練習(xí)冊(cè)答案