精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=x3+ax2+bx+c的圖象經過原點,且在x=1處取得極值,直線y=2x+3到曲線y=f(x)在原點處的切線所成的角為45°.
(1)求f(x)的解析式;
(2)若對于任意實數α和β恒有不等式|f(2sinα)-f(2sinβ)|≤m成立,求m的最小值.
【答案】分析:(1)由函數f(x)=x3+ax2+bx+c的圖象經過原點,有f(0)=c=0,利用在x=1處取得極值可知f′(1)=3+2a+b=0
又曲線y=f(x)在原點處的切線的斜率k=f′(0)=b,而直線y=2x+3到此切線所成的角為45°,根據到角公式可求得解得b=-3,從而可求函數的解析式;
(2)由f′(x)=3x2-3=3(x-1)(x+1)可知,f(x)在(-∞,-1]和[1,+∞)上遞增,在[-1,1]上遞減,從而可得f(x)在[-2,2]上的最大值和最小值分別為-2和2,根據2sinα∈[-2,2],2sinβ∈[-2,2],可得m的最小值.
解答:(1)解:由題意有f(0)=c=0,f'(x)=3x2+2ax+b且f′(1)=3+2a+b=0
又曲線y=f(x)在原點處的切線的斜率k=f′(0)=b,而直線y=2x+3到此切線所成的角為45°,
,解得b=-3,代入f′(1)=3+2a+b=0得a=0,
∴f(x)=x3-3x….(6分)
(2)解:由f′(x)=3x2-3=3(x-1)(x+1)可知,f(x)在(-∞,-1]和[1,+∞)上遞增,在[-1,1]上遞減.
又f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2,
∴f(x)在[-2,2]上的最大值和最小值分別為-2和2,….(12分)
又∵sinα∈[-2,2],2sinβ∈[-2,2]
∴|f(2sinα)-f(2sinβ)|≤4
故m的最小值為4.….(15分)
點評:本題以函數為載體,考查導數的幾何意義,考查利用導數求函數的極值、最值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網已知函數f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•深圳一模)已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•上海模擬)已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:上海模擬 題型:解答題

已知函數f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數學 來源:深圳一模 題型:解答題

已知函數f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數,且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數t的取值范圍.

查看答案和解析>>

同步練習冊答案