解:(Ⅰ)f(x)的定義域為(0,+∞),
,
(1)若-1<a<0,則當0<x<-a時,f′(x)>0;
當-a<x<1時,f′(x)<0;
當x>1時,f′(x)>0,
故f(x)分別在(0,-a),(1,+∞)上單調(diào)遞增,在(-a,1)上單調(diào)遞減;
(2)若a<-1,仿(1)可得f(x)分別在(0,1),(-a,+∞)上單調(diào)遞增,在(1,-a)上單調(diào)遞減;
(Ⅱ)存在a,使g(x)在[a,-a]上為減函數(shù),
事實上,設h(x)=(-2x
3+3ax
2+6ax-4a
2-6a)e
x(x∈R),
則h′(x)=[-2x
3+3(a-2)x
2+12ax-4a
2]e
x,
再設m(x)=-2x
3+3(a-2)x
2+12ax-4a
2(x∈R),
則當g(x)在[a,-a]上單調(diào)遞減時,h(x)必在[a,0]上單調(diào)遞減,所以h′(a)≤0,
由于e
x>0,因此m(a)≤0,
而m(a)=a
2(a+2),所以a≤-2,
此時,顯然有g(x)在[a,-a]上為減函數(shù),當且僅當f(x)在[1,-a]上為減函數(shù),h(x)在[a,1]上為減函數(shù),且h(1)≥e·f(1),
由(Ⅰ)知,當a≤-2時,f(x)在[1,-a]上為減函數(shù), ①
又
,②
不難知道,
,
因m′(x)=-6x
2+6(a-2)x+12a=-6(x+2)(x-a),
令 m′(x)=0,則x=a,或x=-2,而a≤-2,于是
(1)當a<-2時,若a<x<-2,則m′(x)>0;
若-2<x<1,則m′(x)<0,
因而m(x)在(a,-2)上單調(diào)遞增,在(-2,1)上單調(diào)遞減;
(2)當a=-2時;m′(x)≤0,m(x)在(-2,1)上單調(diào)遞減;
綜合(1)、(2)知,當a≤-2時,m(x)在[a,1]上的最大值為m(-2)=-4a
2-12a-8,
所以,
,③
又對x∈[a,1],m(x)=0只有當a=-2時在x=-2取得,
亦即h′(x)=0只有當a=-2時在x=-2取得.
因此,當a≤-2時,h(x)在[a,1]上為減函數(shù),
從而由①,②, ③知,-3≤a≤-2;
綜上所述,存在a,使g(x)在[a,-a]上為減函數(shù),且a的取值范圍為[-3,-2].