設向量=(-2,1),=(λ,-1)(λ∈R),若、的夾角為鈍角,則λ的取值范圍是( )
A.(-∞,-
B.(-,+∞)
C.(,+∞)
D.(-,2)∪(2,+∞)
【答案】分析:判斷出向量的夾角為鈍角的充要條件是數(shù)量積為負且不反向,利用向量的數(shù)量積公式及向量共線的充要條件求出x的范圍.
解答:解:夾角為鈍角

即-2λ-1<0解得λ>
當兩向量反向時,存在m<0使
即(-2,1)=(mλ,-m)
解得λ=2
 λ的取值范圍 是λ>且λ≠2
故選D
點評:本題考查向量夾角的范圍問題.通過向量數(shù)量積公式變形可以解決.但要注意數(shù)量積為負,夾角包括鈍角和平角兩類.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設向量
a
=(2,1),
b
=(1,-2).
(1)求證:
a
b
;
(2)若向量
a
b
 與向量
c
=(-4,3)共線,求實數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(-2,1),
b
=(λ,-1)(λ∈R),若
a
、
b
的夾角為鈍角,則λ的取值范圍是
(-
1
2
,2)∪(2,+∞)
(-
1
2
,2)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)模擬)設向量
a
=(-2,1),
b
=(λ,-1)(λ∈R),若
a
、
b
的夾角為鈍角,則λ的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
=(2,1+x),
b
=(x,1),則”x=1”是“
a
b
”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•奉賢區(qū)一模)設向量
a
=(-2,1),
b
=(1,λ) (λ∈R),若
a
、
b
的夾角為135°,則λ的值是( 。

查看答案和解析>>

同步練習冊答案