【題目】斐波拉契數(shù)列,指的是這樣一個數(shù)列:1,1,2,3,5,813,21,…,在數(shù)學上,斐波拉契數(shù)列{an}定義如下:a1a21,anan1+an2n3,nN),隨著n的增大,越來越逼近黃金分割0.618,故此數(shù)列也稱黃金分割數(shù)列,而以an+1、an為長和寬的長方形稱為“最美長方形”,已知某“最美長方形”的面積約為200平方厘米,則該長方形的長大約是(

A.20厘米B.19厘米C.18厘米D.17厘米

【答案】C

【解析】

因為由已知有0.618,又,得0.618200,進而解得.

解:由已知有0.618,

得:,

,

0.618200,

,

由于172289182324,

所以an+118(厘米),

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個多面體的直觀圖及三視圖如圖所示,其中M N 分別是AF、BC 的中點

1)求證:MN∥平面CDEF

2)求多面體A-CDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三棱錐中,,△為等邊三角形,二面角的余弦值為,當三棱錐的體積最大時,其外接球的表面積為.則三棱錐體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】各項為正數(shù)的數(shù)列如果滿足:存在實數(shù),對任意正整數(shù)n恒成立,且存在正整數(shù)n,使得成立,則稱數(shù)列為“緊密數(shù)列”,k稱為“緊密數(shù)列”的“緊密度”.已知數(shù)列的各項為正數(shù),前n項和為,且對任意正整數(shù)nA,BC為常數(shù))恒成立.

1)當,,時,

①求數(shù)列的通項公式;

②證明數(shù)列是“緊密度”為3的“緊密數(shù)列”;

2)當時,已知數(shù)列和數(shù)列都為“緊密數(shù)列”,“緊密度”分別為,且,,求實數(shù)B的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的定義域為,并滿足以下條件:對任意,有;對任意,有;.

)求的值;

)求證:上是單調增函數(shù);

)若,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2+y23,直線PA與圓O相切于點A,直線PB垂直y軸于點B,且|PB|2|PA|.

1)求點P的軌跡E的方程;

2)過點(1,0)且與x軸不重合的直線與軌跡E相交于P,Q兩點,在x軸上是否存在定點D,使得x軸是∠PDQ的角平分線,若存在,求出D點坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1)求的單調區(qū)間;

2)若,在其公共點處切線相同,求實數(shù)a的值;

3)記,若函數(shù)存在兩個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程(t為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為:

直線l的參數(shù)方程化為極坐標方程;

求直線l與曲線C交點的極坐標其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在二項式的展開式中,前三項系數(shù)的絕對值成等差數(shù)列。

(1)求展開式的第四項;

(2)求展開式的常數(shù)項;

(3)求展開式中各項的系數(shù)和

查看答案和解析>>

同步練習冊答案