【題目】已知數(shù)列的前項(xiàng)和滿(mǎn)足:(為常數(shù),且,).
(1)求的通項(xiàng)公式;
(2)設(shè),若數(shù)列為等比數(shù)列,求的值;
(3)在滿(mǎn)足條件(2)的情形下,設(shè),數(shù)列的前項(xiàng)和為,若不等式對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)(2)(3)
【解析】
試題分析:(1)由與關(guān)系求通項(xiàng),注意分類(lèi)討論:當(dāng)時(shí),,得.當(dāng)時(shí),由,相減得,因此是等比數(shù)列,且公比是,所以(2)先代入化簡(jiǎn)得,由數(shù)列為等比數(shù)列得,解得,最后驗(yàn)證(3)先求前項(xiàng)和為,代入化簡(jiǎn)不等式得,所以只需求最大值,利用相鄰兩項(xiàng)關(guān)系求數(shù)列單調(diào)性,確定最大值
試題解析:解:(1)當(dāng)時(shí),,得.
當(dāng)時(shí),由,即,①
得,②
①②,得,即,∴(),
∴是等比數(shù)列,且公比是,∴.
(2)由(1)知,,即,
若數(shù)列為等比數(shù)列,則有,
而,,,
故,解得,
再將代入,得,
由,知為等比數(shù)列,∴.
(3)由,知,∴,
∴,
由不等式恒成立,得恒成立,
設(shè),由,
∴當(dāng)時(shí),,當(dāng)時(shí),,
而,,∴,
∴,∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市戶(hù)居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶(hù)中,用分層抽樣的方法抽取戶(hù)居民,則月平均用電量在的用戶(hù)中應(yīng)抽取多少戶(hù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠需要對(duì)這些產(chǎn)品的性能進(jìn)行檢測(cè)現(xiàn)決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào)
(1)如果從第8行第4列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫(xiě)出最先檢測(cè)的3件產(chǎn)品的編號(hào);(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),抽取的100件產(chǎn)品的安全性能和環(huán)保性能的檢測(cè)結(jié)果如下表(橫向和縱向分別表示安全性能和環(huán)保性能):
(i)若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為34%,求的值;
(ii)若,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率.
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | m | 4 | n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實(shí)數(shù)的值;
(2)在(1)的條件下,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,底面,,,是的中點(diǎn),是線段上的一點(diǎn),且,連接,,.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,且函數(shù)是偶函數(shù).
(1)求的解析式;.
(2)若不等式在上恒成立,求n的取值范圍;
(3)若函數(shù)恰好有三個(gè)零點(diǎn),求k的值及該函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為2的正方形,平面平面,且.
(1)證明:平面平面;
(2)當(dāng),且與平面所成角的正切值為時(shí),求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:對(duì)棱相等的四面體為等腰四面體.
(1)若等腰四面體的每條棱長(zhǎng)都是,求該等腰四面體的體積;
(2)求證:等腰四面體每個(gè)面的三角形均為銳角三角形:
(3)設(shè)等腰四面體的三個(gè)側(cè)面與底面所成的角分別為,請(qǐng)判斷是否為定值?如果是定值,請(qǐng)求出該定值;如果不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com