如圖,半徑為2的兩個等圓⊙O1與⊙O2外切于點P,過O1作⊙O2的兩條切線,切點分別為A,B,與⊙O1分別交于C,D,則APB與CPD的弧長之和為( )

A.2π B. C.π D.

 

A

【解析】

試題分析:連接O1O2,O2A,O2B因為O1A是切線,∴O2A⊥O1A,又∵O1O2=2O2A,∴∠AO1O2=30°,∴∠AO1B=60°,∠A02B=120°,根據(jù)弧長的計算公式是l=,就可以求出兩條弧的長.

【解析】
CPD的弧長==

APB的弧長==

∴APB與CPD的弧長之和為2π.

故選A.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:[同步]2015年人教A版必修二4.3 空間直角坐標系練習卷(解析版) 題型:

點(2,0,3)在空間直角坐標系中的位置是在( )

A.y軸上 B.xOy平面上 C.xOz平面上 D.第一卦限內(nèi)

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

已知矩陣.若矩陣A屬于特征值6的一個特征向量為,屬于特征值1的一個特征向量為,矩陣A= .

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(解析版) 題型:填空題

(2014•北京模擬)已知圓O的半徑為3,從圓O外一點A引切線AD和割線ABC,圓心O到AC的距離為2,AB=3,則切線AD的長為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(解析版) 題型:選擇題

如圖,直線AD與△ABC的外接圓相切于點A,若∠B=60°,則∠CAD等于( )

A.30° B.60° C.90° D.120°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(解析版) 題型:選擇題

(2009•崇文區(qū)一模)如圖,半徑相等的兩圓⊙O1,⊙O2相交于P,Q兩點.圓心O1在⊙O2上,PT是⊙O1的切線,PN是⊙O2的切線,則∠TPN的大小是( )

A.90° B.120° C.135° D.150°

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:填空題

(2010•天津)如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若,則的值為 .

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:選擇題

如圖,已知圓內(nèi)接四邊形ABCD的邊長為AB=2,BC=6,CD=DA=4,則四邊形ABCD面積為( )

A. B.8 C. D.8

 

查看答案和解析>>

科目:高中數(shù)學 來源:[同步]2014年蘇教版選修1-2 2.2直接證明與間接證明練習卷(解析版) 題型:解答題

已知a>0,求證:≥a+﹣2.

 

查看答案和解析>>

同步練習冊答案