分析 先設(shè)直線的方程為斜截式(有斜率時),代入拋物線,利用OA⊥OB找到k,b的關(guān)系,然后利用弦長公式將面積最后表示成k的函數(shù),然后求其最值即可.最后求出沒斜率時的直線進(jìn)行比較得最終結(jié)果.
解答 解:當(dāng)直線斜率存在時,設(shè)直線方程為y=kx+b.
由$\left\{\begin{array}{l}{y=kx+b}\\{{y}^{2}=2px}\end{array}\right.$消去y得k2x2+(2kb-2p)x+b2=0.
設(shè)A(x1,y1),B(x2,y2),
由題意得△=(2kb-2p)2-4k2b2>0,即kb<$\frac{p}{2}$.
${x}_{1}+{x}_{2}=\frac{2p-2kb}{{k}^{2}},{x}_{1}{x}_{2}=\frac{^{2}}{{k}^{2}}$,
所以${y}_{1}{y}_{2}={k}^{2}{x}_{1}{x}_{2}+kb({x}_{1}+{x}_{2})+^{2}$=$\frac{2bp}{k}$.
所以由OA⊥OB得$\overrightarrow{OA}•\overrightarrow{OB}={x}_{1}{x}_{2}+{y}_{1}{y}_{2}=\frac{^{2}}{{k}^{2}}+\frac{2pbk}{{k}^{2}}=0$
所以b=-2pk,①代入直線方程得y=kx-2pk=k(x-2p),
所以直線l過定點(diǎn)(2p,0).
再設(shè)直線l方程為x=my+2p,代入y2=2px得y2-2pmy-4p2=0,
所以y1+y2=2pm,y1y2=-4p2,所以$|{y}_{1}-{y}_{2}|=\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{4{m}^{2}{p}^{2}+16{p}^{2}}=\sqrt{(4{m}^{2}+16){p}^{2}}$=$\sqrt{4{m}^{2}+16}p$,
所以S=$\frac{1}{2}×2{p}^{2}×\sqrt{4{m}^{2}+16}$,
所以當(dāng)m=0時,S的最小值為4p2.
故答案為:4p2.
點(diǎn)評 本題考查了直線和圓錐曲線的位置關(guān)系中的弦長問題中的最值問題,一般先結(jié)合韋達(dá)定理將要求最值的量表示出來,然后利用函數(shù)思想或基本不等式求最值即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的最小正周期是π | B. | f(x)相鄰對稱中心相距π個單位 | ||
C. | f(x)相鄰漸近線相距π個單位 | D. | f(x)既是奇函數(shù)又是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com