【題目】設(shè)命題p:實(shí)數(shù)x滿足(x-a)(x-3a)<0,其中a0,命題q:實(shí)數(shù)x滿足(x-3)(x-2≤0

1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍.

2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

【答案】1;(2

【解析】試題分析:(1)pq為真,即為p,q均為真命題,解兩個(gè)不等式求交集即可;

(2)若¬p是¬q的充分不必要條件,可得qp的充分不必要條件,由題意可得P={x|ax3a}Q={x|2≤x≤3},由QP即可得解.

試題解析:

1)由(x-1)(x-3)<0,得P={x|1x3},x-3)(x-2≤0,可得Q={x|2≤x≤3}

pq為真,即為p,q均為真命題,可得x的取值范圍是2≤x3

2)若¬p是¬q的充分不必要條件,可得qp的充分不必要條件,

由題意可得P={x|ax3a}Q={x|2≤x≤3},由QP,可得a233a,解得1a2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=3an+1.
(1)證明{an+ }是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)證明: + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是奇函數(shù),且滿足,當(dāng)時(shí),,則內(nèi)是( )

A. 單調(diào)增函數(shù),且 B. 單調(diào)減函數(shù),且

C. 單調(diào)增函數(shù),且 D. 單調(diào)減函數(shù),且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則(  )

A. f B. f

C. f D. f

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若對(duì)于任意的,若函數(shù)在區(qū)間上有最值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買意愿弱;若得分不低于60分,說(shuō)明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?

購(gòu)買意愿強(qiáng)

購(gòu)買意愿弱

合計(jì)

20~40歲

大于40歲

合計(jì)

(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.

附:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】借助計(jì)算機(jī)(器)作某些分段函數(shù)圖象時(shí),分段函數(shù)的表示有時(shí)可以利用函數(shù),例如要表示分段函數(shù)g(x)=總可以將g(x)表示為g(x)=xh(x-2)+(-x)h(2-x).

(1)設(shè)f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),請(qǐng)把函數(shù)f(x)寫成分段函數(shù)的形式;

(2)已知G(x)=[(3a-1)x+4a]h(1-x)+logaxh(x-1)是R上的減函數(shù),求a的取值范圍;

(3)設(shè)F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函數(shù)F(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平面,四邊形為矩形,四邊形為直角梯形,ABCD,

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,且sin(α+β)=3sin(α-β).

(1)若tanα=2,求tanβ的值;

(2)求tan(α-β)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案