已知圓C1:(x+3)2+y2=1和圓C2:(x-3)2+y2=9,動(dòng)圓M同時(shí)與圓C1及圓C2相外切,求動(dòng)圓圓心M的軌跡方程.
分析:設(shè)動(dòng)圓圓心M(x,y),動(dòng)圓M與C1、C2的切點(diǎn)分別為A、B,則|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|,從而可得|MC2|-|MC1|=2,利用雙曲線的定義,即可求動(dòng)圓圓心M的軌跡方程.
解答:解:設(shè)動(dòng)圓圓心M(x,y),動(dòng)圓M與C1、C2的切點(diǎn)分別為A、B,則|MC1|-|AC1|=|MA|,|MC2|-|BC2|=|MB|.
又∵|MA|=|MB|,
∴|MC2|-|MC1|=|BC2|-|AC1|=3-1=2,
即|MC2|-|MC1|=2,又∵|C1C2|=6,
由雙曲線定義知:動(dòng)點(diǎn)M的軌跡是以C1、C2為焦點(diǎn),中心在原點(diǎn)的雙曲線的左支.
∵2a=2,2c=6,∴a=1,c=3,
∴b2=8.
∴動(dòng)點(diǎn)M的軌跡方程為x2-
y2
8
=1(x≤-1).
點(diǎn)評(píng):本題考查圓與圓的位置關(guān)系,考查雙曲線的定義,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x-3)2+(y+4)2=4,圓C2:x2+y2-9=0,則圓C1和圓C2的位置關(guān)系是(  )
A、外離B、外切C、相交D、內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-3)2+(y+2)2=4,圓C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)設(shè)P為坐標(biāo)軸上的點(diǎn),滿足:過(guò)點(diǎn)P分別作圓C1與圓C2的一條切線,切點(diǎn)分別為T1、T2,使得PT1=PT2,試求出所有滿足條件的點(diǎn)P的坐標(biāo);
(2)若斜率為正數(shù)的直線l平分圓C1,求證:直線l與圓C2總相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓C1:(x+3)2+(y-1)2=4和圓C2:(x-4)2+(y-5)2=9.
(1)判斷兩圓的位置關(guān)系;
(2)求直線m的方程,使直線m被圓C1截得的弦長(zhǎng)為4,與圓C2截得的弦長(zhǎng)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x-3)2+y2=1,圓C2:x2+(y+4)2=16,則圓C1,C2的位置關(guān)系為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案