分析 由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,結(jié)合直觀圖判斷外接球球心的位置,求出半徑,代入求得表面積公式計(jì)算.
解答 解:由三視圖知:幾何體為三棱錐,且三棱錐的一條側(cè)棱垂直于底面,高為2,
底面為等腰直角三角形,斜邊長(zhǎng)為2$\sqrt{2}$,如圖:
∴△ABC的外接圓的圓心為斜邊AC的中點(diǎn)D,OD⊥AC,且OD?平面SAC,
∵SA=AC=2,∴SC的中點(diǎn)O為外接球的球心,
∴半徑R=$\sqrt{3}$,
∴外接球表面積S=4π×3=12π.
故答案為:12π.
點(diǎn)評(píng) 本題考查了由三視圖求幾何體的外接球的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征,利用幾何體的結(jié)構(gòu)特征與數(shù)據(jù)求得外接球的半徑是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24x+7y-28=0 | B. | 7x+24y-28=0 | C. | 24x-7y-28=0 | D. | 7x-24y-28=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 5$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$] | B. | ($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$] | ||
C. | [$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$] | D. | ($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(0,\frac{4}{5})$ | B. | $(\frac{4}{5},+∞)$ | C. | $(\frac{4}{5},1)$ | D. | $(0,\frac{4}{5})∪(1,+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{33}{15}$ | B. | $\frac{33}{15}$ | C. | -$\frac{33}{17}$ | D. | $\frac{33}{17}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com