18.若${log_a}\frac{4}{5}<1$(a>0,且a≠1),則實(shí)數(shù)a的取值范圍是(  )
A.$(0,\frac{4}{5})$B.$(\frac{4}{5},+∞)$C.$(\frac{4}{5},1)$D.$(0,\frac{4}{5})∪(1,+∞)$

分析 由${log_a}\frac{4}{5}<1$=logaa,然后對(duì)a分類討論,結(jié)合對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:${log_a}\frac{4}{5}<1$=logaa.
當(dāng)0<a<1時(shí),得0<a<$\frac{4}{5}$,∴0<a<$\frac{4}{5}$;
當(dāng)a>1時(shí),得a>$\frac{4}{5}$,∴a>1.
綜上,a的取值范圍是$(0,\frac{4}{5})∪(1,+∞)$.
故選:D.

點(diǎn)評(píng) 本題考查對(duì)數(shù)不等式的解法,考查對(duì)數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.以圓C1:x2+y2+4x+1=0與圓C2:x2+y2+2x+2y+1=0相交的公共弦為直徑的圓的方程為(  )
A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+$\frac{3}{5}$)2+(y+$\frac{6}{5}$)2=$\frac{4}{5}$D.(x-$\frac{3}{5}$)2+(y-$\frac{6}{5}$)2=$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.某幾何體的三視圖如圖所示,則該幾何體的外接球表面積為12π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.?dāng)?shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}={3^n}•\sqrt{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.記等差數(shù)列{an}的前n項(xiàng)和為Sn,若a6+a10-a12=8,a14-a8=4,則S19=( 。
A.224B.218C.228D.258

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在等比數(shù)列{an}中,a1=$\frac{1}{3},2{a_2}={a_4}$,則a5等于( 。
A.$\frac{4}{3}$B.$\frac{6}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)$f(x)={2}^{x}+\frac{1}{4•{2}^{x}}$的最小值為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.中國(guó)柳州從2011年起每年國(guó)慶期間都舉辦一屆國(guó)際水上狂歡節(jié),到2016年已舉辦了六屆,旅游部門統(tǒng)計(jì)在每屆水上狂歡節(jié)期間,吸引了不少外地游客到柳州,這將極大地推進(jìn)柳州的旅游業(yè)的發(fā)展,現(xiàn)將前五屆水上狂歡節(jié)期間外地游客到柳州的人數(shù)統(tǒng)計(jì)如表:
年份2011年2012年2013年2014年2015年
水上狂歡節(jié)屆編號(hào) 12345
外地游客人數(shù) (單位:十萬(wàn))0.60.80.91.21.5
(1)求y關(guān)于x的線性回歸方程$\widehat{y}=\widehatx+\widehat{a}$;
(2)利用(1)中的線性回歸方程,預(yù)測(cè)2017年第7屆柳州國(guó)際水上狂歡節(jié)期間外地游客到柳州的人數(shù).
參考公式:$\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}}$,$\widehat{a}=\overline{y}-\widehat\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)y=$\sqrt{x-1}+\frac{1}{3-x}$的定義域是{x|x≥1且x≠3}.

查看答案和解析>>

同步練習(xí)冊(cè)答案