曲線
x=cosθ
y=1+sinθ
(θ為參數(shù))的極坐標(biāo)方程為
ρ=2sinθ
ρ=2sinθ
分析:先利用三角函數(shù)的同角公式展開曲線C的參數(shù)方程化成普通方程,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換即可求解.
解答:解:∵曲線C的參數(shù)方程是
x=cosθ
y=1+sinθ
(θ是參數(shù)),
∴消去參數(shù)得:x2+(y-1)2=1,
即x2+y2=2y,
∴曲線C的極坐標(biāo)方程可寫為ρ2=2ρsinθ.
即:ρ=2sinθ.
故答案為:ρ=2sinθ.
點評:本題考查點的極坐標(biāo)及參數(shù)方程和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將曲線 
x=cosθ
y=sinθ
 (θ∈R)
,上所有點的橫坐標(biāo)擴(kuò)大到原來的2倍,縱坐標(biāo)縮小到原來的
1
2
倍后,得到的曲線的焦點坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
為參數(shù))與曲線ρ2-2ρcosθ=0的交點個數(shù)為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(考生注意:只能從下列A、B、C三題中選做一題,如果多做,則按第一題評閱記分)
A.(坐標(biāo)系與參數(shù)方程選做題)曲線
x=cosα
y=1+sinα
(α為參數(shù))與曲線ρ2-2ρcosθ=0的交點個數(shù)為
2
2

B.(不等式選講選做題)設(shè)函數(shù)f(x)=
|x+1|+|x-2|-a
,若函數(shù)f(x)的定義域為R,則實數(shù)a的取值范圍是
(-∞,3]
(-∞,3]

C.(幾何證明選講選做題)如圖,從圓O外一點A引圓的切線AD和割線ABC,已知AC=6,圓O的半徑為3,圓心O到AC的距離為
5
,則AD=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)若
x≤2,y≤2
x+y≥2
,則目標(biāo)函數(shù)z=x+2y的取值范圍是
[2,6],(±
15
2
,0)
[2,6],(±
15
2
,0)

(理)將曲線 
x=cosθ
y=sinθ
 (θ∈R)
,上所有點的橫坐標(biāo)擴(kuò)大到原來的2倍,縱坐標(biāo)縮小到原來的
1
2
倍后,得到的曲線的焦點坐標(biāo)為
(±
15
2
,0)
(±
15
2
,0)

查看答案和解析>>

同步練習(xí)冊答案