【題目】在直角坐標(biāo)系xoy中,已知曲線C:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
(1)求曲線C的極坐標(biāo)方程,若A,B為曲線C上的兩點(diǎn),證明當(dāng)時(shí),定值;
(2)若過點(diǎn)且傾斜角為的直線l與曲線C相交于A,B兩點(diǎn),求的值.
【答案】(1);(2).
【解析】
(1)把曲線中的參數(shù)消去,可得普通方程,結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式可得曲線的極坐標(biāo)方程,設(shè)出,的極坐標(biāo),由題意求得與,即可證明是定值;
(2)寫出直線的參數(shù)方程,代入曲線的普通方程,再由根與系數(shù)的關(guān)系及參數(shù)的幾何意義求解.
(1)由為參數(shù)),消去參數(shù),可得曲線的普通方程為;
將,代入,得.
設(shè),的極坐標(biāo)分別為,,,
則,.
為定值;
(2)由題意,直線的參數(shù)方程為為參數(shù)),
代入,得.
設(shè)點(diǎn),對(duì)應(yīng)的參數(shù)分別為,,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:xy2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)P和Q.
①求證:線段PQ的中點(diǎn)坐標(biāo)為;
②求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移()個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,計(jì)算得,,,.
(1)求家庭的月儲(chǔ)蓄關(guān)于月收入的線性回歸方程,并判斷變量與之間是正相關(guān)還是負(fù)相關(guān);
(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲(chǔ)蓄.(注:線性回歸方程中,,其中,為樣本平均值.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與地面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑,首屆中國國際進(jìn)口博覽會(huì)的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬,如圖所示,在陽馬中,底面.
(1)已知,斜梁與底面所成角為,求立柱的長;(精確到)
(2)求證:四面體為鱉臑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn):(單位:噸),用水量不超過的部分按平價(jià)收費(fèi),超過的部分按議價(jià)收費(fèi),為了了解全布市民用用水量分布情況,通過袖樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照 …… 分成9組,制成了如圖所示的頻率分布直方圖
(1)求頻率分布直方圖中的值;
(2)若該市政府看望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】化簡
(1)
(2)
【答案】(1) ;(2) .
【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1
(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為
試題解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×()
=×cos10°×()
=×(﹣)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
點(diǎn)睛:三角函數(shù)式的化簡要遵循“三看”原則:一看角,這是重要一環(huán),通過看角之間的差別與聯(lián)系,把角進(jìn)行合理的拆分,從而正確使用公式 ;二看函數(shù)名稱,看函數(shù)名稱之間的差異,從而確定使用的公式,常見的有切化弦;三看結(jié)構(gòu)特征,分析結(jié)構(gòu)特征,可以幫助我們找到變形的方向,如遇到分式要通分等.
【題型】解答題
【結(jié)束】
18
【題目】平面內(nèi)給定三個(gè)向量
(1)求
(2)求滿足的實(shí)數(shù).
(3)若,求實(shí)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為分別為左右焦點(diǎn),是橢圓上點(diǎn),且.
(1)求橢圓的方程;
(2)過的直線與橢圓交于不同的兩點(diǎn),則的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值以及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com