18.已知sinα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π).
(Ⅰ)求sin(α-$\frac{π}{6}$)的值;
(Ⅱ)求tan2α的值.

分析 (Ⅰ)由條件利用同角三角函數(shù)的基本關(guān)系、兩角差的正弦公式求得要求式子的值.
(Ⅱ)由題意可得tanα的值,再利用二倍角的正切公式求得tanα的值.

解答 (Ⅰ)解:因?yàn)閟inα=$\frac{4}{5}$,α∈($\frac{π}{2}$,π),所以cosα=-$\frac{3}{5}$,
所以siin(α-$\frac{π}{6}$)=sinα•$\frac{\sqrt{3}}{2}$-cosα•$\frac{1}{2}$=$\frac{4\sqrt{3}+3}{10}$,
(Ⅱ)解:由(Ⅰ)得tanα=-$\frac{4}{3}$,∴tanα=$\frac{2tanα}{{1-tan}^{2}α}$=$\frac{24}{7}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角差的正弦公式,二倍角的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.拋物線x2=2y離點(diǎn)A(0,a)(a>0)最近的點(diǎn)恰好是頂點(diǎn),這個(gè)結(jié)論成立的充要條件是( 。
A.a>0B.a≥1C.0<a≤$\frac{1}{2}$D.0<a≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為$({\sqrt{3},1})$,點(diǎn)N的坐標(biāo)為(cosωx,sinωx),其中ω>0,設(shè)$f(x)=\overrightarrow{OM}•\overrightarrow{ON}$(O為坐標(biāo)原點(diǎn)).
(Ⅰ)若ω=2,∠A為△ABC的內(nèi)角,當(dāng)f(A)=1時(shí),求∠A的大。
(Ⅱ)記函數(shù)y=f(x)(x∈R)的值域?yàn)榧螱,不等式x2-mx<0的解集為集合P.當(dāng)P⊆G時(shí),求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線3x-4y-5=0的傾斜角為( 。
A.$arctan\frac{3}{4}$B.$π-arctan\frac{3}{4}$C.$arctan\frac{4}{3}$D.$π-arctan\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列函數(shù)f(x)中,滿足“對(duì)任意x1、x2∈(0,+∞),當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”的是( 。
A.f(x)=(x-1)2B.f(x)=exC.f(x)=$\frac{1}{x}$D.f(x)=ln(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為$\frac{\sqrt{2}}{2}$.直線y=x-1與橢圓C交于不同的兩點(diǎn)M,N.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求線段MN的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(θ)=sin$\frac{θ}{2}$cos$\frac{π}{6}$-2cos2$\frac{θ}{4}$cos$\frac{π}{3}$的單調(diào)遞減區(qū)間為[$\frac{4π}{3}$+4kπ,$\frac{10π}{3}$+4kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$\overrightarrow{a\;}、\;\;\overrightarrow b$均為單位向量,且$\overrightarrow a•\;\overrightarrow b=0$.若$|{\overrightarrow c-4\overrightarrow a}|+|{\overrightarrow c-3\overrightarrow b}|=5$,則$|{\overrightarrow c+\overrightarrow a}|$的取值范圍是( 。
A.$[{3,\;\;\sqrt{10}}]$B.[3,5]C.[3,4]D.$[{\sqrt{10},\;\;5}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.正四棱錐O-ABCD的體積為$\frac{{3\sqrt{2}}}{2}$,底面邊長(zhǎng)為$\sqrt{3}$,求正四棱錐O-ABCD的內(nèi)切球的表面積$(4-\sqrt{7})π$.

查看答案和解析>>

同步練習(xí)冊(cè)答案