2.在命題“方程x2=4的解為x=±2”中使用的聯(lián)結(jié)詞是(  )
A.B.C.D.無法確定

分析 將復(fù)合命題與成“p或q”的形式,可得答案.

解答 解:命題“方程x2=4的解為x=±2”,
即命題“若x為方程x2=4的解,則x=2,或x=-2”,
故命題中使用的聯(lián)結(jié)詞是“或”,
故選:B.

點評 本題考查的知識點是邏輯聯(lián)結(jié)詞,復(fù)合命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.正方體的邊長為2,且它的8個頂點都在同一個球面 上,則這個球的表面積為( 。
A.12πB.-125πC.0D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.計算10lg3+log525=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx+sin2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期及其對稱軸方程;
(2)設(shè)函數(shù)g(x)=f($\frac{ωx+φ}{2}$+$\frac{π}{12}$),其中常數(shù)ω>0,|φ|<$\frac{π}{2}$.
(i)當ω=4,φ=$\frac{π}{6}$時,函數(shù)y=g(x)-4λf(x)在[$\frac{π}{12}$,$\frac{π}{3}$]上的最大值為$\frac{3}{2}$,求λ的值;
(ii)若函數(shù)g(x)的一個單調(diào)減區(qū)間內(nèi)有一個零點-$\frac{2π}{3}$,且其圖象過點A($\frac{7π}{3}$,1),記函數(shù)g(x)的最小正周期為T,試求T取最大值時函數(shù)g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)既是奇函數(shù)又是偶函數(shù)的是( 。
A.$f(x)=x+\frac{1}{x}$B.$f(x)=\frac{1}{x^2}$
C.$f(x)=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$D.$f(x)=\left\{\begin{array}{l}\frac{1}{2}{x^2}+1,x>0\\-\frac{1}{2}{x^2}-1,x<0\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.方程$\frac{{x}^{2}}{15-k}$+$\frac{{y}^{2}}{k-9}$=1表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是(12,15).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在長方體ABCD-A1B1C1B1中,AA1=2AB=2AD=4,點E在CC1上且C1E=3EC.利用空間向量解決下列問題:
(1)證明:A1C⊥平面BED;
(2)求銳二面角A1-DE-B 的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)等差數(shù)列{an}的前項和為Sn,且a2=2,S5=15,數(shù)列{bn}的前項和為Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(Ⅰ)求數(shù)列{an}通項公式an及前項和Sn
(Ⅱ) 求數(shù)列{bn}通項公式bn及前項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知△ABC的三個頂點是A(3,0),B(4,5),C(0,7)
(1)求BC邊上的高所在的直線方程(請用直線的一般方程表示解題結(jié)果)
(2)求BC邊上的中線所在的直線方程(請用直線的一般方程表示解題結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案