11.已知集合A={x∈R|0≤x≤2},集合N={x∈R|x2≤1},則M∪N=( 。
A.(0,1]B.[0,2]C.[-1,2]D.(-∞,2]

分析 運(yùn)用二次不等式的解法,化簡(jiǎn)集合B,再由并集的定義,即可得到所求集合.

解答 解:集合A={x∈R|0≤x≤2},
集合N={x∈R|x2≤1}={x∈R|-1≤x≤1},
則M∪N={x∈R|-1≤x≤2}=[-1,2].
故選:C.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是并集的求法,同時(shí)考查二次不等式的解法,運(yùn)用定義法解題是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)復(fù)數(shù)z滿足(1+i)z=2i,則|z|=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,如果輸入n=7,m=4,則輸出的p等于( 。
A.120B.360C.840D.1008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知A={x|-2≤x≤0},B={x|x2-x-2≤0},則A∪B=[-2,2],(∁RA)∩B=(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若復(fù)數(shù)z滿足z2=-4,則復(fù)數(shù)z的實(shí)部為( 。
A.2B.1C.-2D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值為2,則空白判斷框中的條件可能為( 。
A.x>3B.x>4C.x≤4D.x≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.我國(guó)古代數(shù)學(xué)家劉徽創(chuàng)立的“割圓術(shù)”可以估算圓周率π,理論上能把π的值計(jì)算到任意精度,祖沖之繼承并發(fā)展了“割圓術(shù)”,將π的值精確到小數(shù)點(diǎn)后七位,其結(jié)果領(lǐng)先世界一千多年,“割圓術(shù)”的第一步是計(jì)算單位圓內(nèi)接正六邊形的面積S6,S6=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.
(1)當(dāng)a=1時(shí),求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.記Sn為等差數(shù)列{an}的前n項(xiàng)和.若a4+a5=24,S6=48,則{an}的公差為( 。
A.1B.2C.4D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案