已知函數(shù)y=(mx2+4x+m+2)-
1
4
+(m2-mx+1)的定義域?yàn)镽,則m的取值范圍是(  )
分析:變?cè)瘮?shù)中的分?jǐn)?shù)指數(shù)冪為根式,然后求使分母中根式內(nèi)部的代數(shù)式恒大于0的x的取值范圍.
解答:解:原函數(shù)化為y=
1
4mx2+4x+m+2
+(m2-mx+1)
,
因?yàn)樵瘮?shù)的定義域?yàn)镽,所以對(duì)任意x∈R,mx2+4x+m+2>0恒成立,
當(dāng)m=0時(shí)不合題意,
所以有
m>0
42-4m(m+2)<0
,解得:m>
5
-1

所以m的取值范圍是(
5
-1
,+∞).
故選B.
點(diǎn)評(píng):本題考查了函數(shù)定義域的求法,考查了分類(lèi)討論的數(shù)學(xué)思想,是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2-6mx+m+8
的定義域?yàn)镽.
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m變化時(shí),若y的最小值為f(m),求函數(shù)f(m)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2-4mx+m+8
的定義域?yàn)镽,則實(shí)數(shù)m的范圍為
0≤m≤
8
3
0≤m≤
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2+4
3
x+n
x2+1
的最大值為7,最小值為-1,求此函數(shù)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2-6mx+m+8
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案