已知函數(shù)y=
mx2-6mx+m+8
的定義域?yàn)镽.
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m變化時(shí),若y的最小值為f(m),求函數(shù)f(m)的值域.
分析:(1)利用該函數(shù)的被開(kāi)方數(shù)大于等于零得出該函數(shù)有意義需滿(mǎn)足的不等式,結(jié)合恒成立問(wèn)題得出字母m滿(mǎn)足的不等式;
(2)通過(guò)配方法將函數(shù)的被開(kāi)方數(shù)寫(xiě)成二次函數(shù)的頂點(diǎn)式,求出y的最小值為f(m),借助m的范圍求出f(m)的值域.
解答:解:(1)依題意,當(dāng)x∈R時(shí),mx2-6mx+m+8≥0恒成立.當(dāng)m=0時(shí),x∈R;
當(dāng)m≠0時(shí),
m>0
△≤0

m>0
(-6m)2-4m(m+8)≤0

解之得0<m≤1,故實(shí)數(shù)m的取值范圍0≤m≤1.
(2)當(dāng)m=0時(shí),y=2
2
;
當(dāng)0<m≤1,y=
m(x-3)2+8-8m

∴ymin=
8-8m

因此,f(m)=
8-8m
(0≤m≤1),
易得0≤8-8m≤8.
∴f(m)的值域?yàn)閇0,2
2
].
點(diǎn)評(píng):本題考查偶次根式的定義域的求解,考查不等式恒成立問(wèn)題的解決辦法,關(guān)鍵要進(jìn)行等價(jià)轉(zhuǎn)化,利用單調(diào)性求值域是本題的另一個(gè)命題點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2-4mx+m+8
的定義域?yàn)镽,則實(shí)數(shù)m的范圍為
0≤m≤
8
3
0≤m≤
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2+4
3
x+n
x2+1
的最大值為7,最小值為-1,求此函數(shù)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=(mx2+4x+m+2)-
1
4
+(m2-mx+1)的定義域?yàn)镽,則m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
mx2-6mx+m+8
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案