已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
(1)
遞減 |
遞增 |
遞減 |
遞增 |
遞增 |
其中
(2).
【解析】
試題分析:(1)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051409133851886932/SYS201305140914222220291440_DA.files/image011.png">,.設(shè) ,
①當(dāng)時(shí),,在上恒成立,則在上恒成立,此時(shí)在上單調(diào)遞減.
②當(dāng)時(shí),(I)由得.
當(dāng)時(shí),恒成立,
在上單調(diào)遞增. 當(dāng)時(shí),恒成立,在上單調(diào)遞減.
(II)由得或;.當(dāng)時(shí),開(kāi)口向下,在上恒成立,則在上恒成立,此時(shí)在上單調(diào)遞減.
當(dāng) ,開(kāi)口向上,在上恒成立,則在上恒成立,
此時(shí) 在上單調(diào)遞增.
(III)由得
若,開(kāi)口向上,,且,,都在上. 由,即,得或;
由,即,得.
所以函數(shù)的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.
當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,在
恒成立,即在(0,+恒成立,所以在單調(diào)遞減
綜上所述:
遞減 |
遞增 |
遞減 |
遞增 |
遞增 |
其中
(2)因?yàn)榇嬖谝粋(gè)使得,
則,等價(jià)于.令,等價(jià)于“當(dāng) 時(shí),”.
對(duì)求導(dǎo),得. 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051409133851886932/SYS201305140914222220291440_DA.files/image057.png">,由,所以在上單調(diào)遞增,在上單調(diào)遞減.
由于,所以,因此.
考點(diǎn):本題考查了導(dǎo)數(shù)的運(yùn)用
點(diǎn)評(píng):近幾年新課標(biāo)高考對(duì)于函數(shù)與導(dǎo)數(shù)這一綜合問(wèn)題的命制,一般以有理函數(shù)與半超越(指數(shù)、對(duì)數(shù))函數(shù)的組合復(fù)合且含有參量的函數(shù)為背景載體,解題時(shí)要注意對(duì)數(shù)式對(duì)函數(shù)定義域的隱蔽,這類(lèi)問(wèn)題重點(diǎn)考查函數(shù)單調(diào)性、導(dǎo)數(shù)運(yùn)算、不等式方程的求解等基本知識(shí),注重?cái)?shù)學(xué)思想(分類(lèi)與整合、數(shù)與形的結(jié)合)方法(分析法、綜合法、反證法)的運(yùn)用.把數(shù)學(xué)運(yùn)算的“力量”與數(shù)學(xué)思維的“技巧”完美結(jié)合
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省青島市高三3月統(tǒng)一質(zhì)量檢測(cè)考試(第二套)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求的最小值;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱(chēng)為函數(shù)的保值區(qū)間.設(shè),試問(wèn)函數(shù)在上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆湖南省高一12月月考數(shù)學(xué) 題型:解答題
(本題滿(mǎn)分14分)定義在D上的函數(shù),如果滿(mǎn)足;對(duì)任意,存在常數(shù),都有成立,則稱(chēng)是D上的有界函數(shù),其中M稱(chēng)為函數(shù)的上界。
已知函數(shù),
(1)當(dāng)時(shí),求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請(qǐng)說(shuō)明理由;
(2)若函數(shù)在上是以3為上界函數(shù)值,求實(shí)數(shù)的取值范圍;
(3)若,求函數(shù)在上的上界T的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市銅山縣棠張中學(xué)高三(上)周練數(shù)學(xué)試卷(理科)(11.3)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com