4.命題甲x+y≠8;命題乙:x≠2或y≠6,則( 。
A.甲是乙的充分非必要條件
B.甲是乙的必要非充分條件
C.甲是乙的充要條件
D.甲既不是乙的充分條件,也不是乙的必要條件.

分析 根據(jù)充分條件和必要條件的定義以及逆否命題的等價(jià)性即可得到結(jié)論.

解答 解:¬甲:x+y=8,¬乙:x=2且y=6,
當(dāng)x=2且y=6時(shí),x+y=8成立,
當(dāng)x=1且y=7時(shí)滿足x+y=8,但x=2且y=6不成立,
即¬乙是¬甲的充分不必要條件,
則根據(jù)逆否命題的等價(jià)性可知命題甲是命題乙的充分不必要條件,
故選:A.

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)逆否命題的等價(jià)性進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.否則不太容易判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}中,a1=-1,an+1=3an-1,則其通項(xiàng)an=$-\frac{{{3^n}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=sin2x+sinx+cosx,以下說法中不正確的是( 。
A.f(x)周期為2πB.f(x)最小值為-$\frac{5}{4}$
C.f(x)在區(qū)間[0,$\frac{π}{2}$]單調(diào)遞增D.f(x)關(guān)于點(diǎn)x=$\frac{π}{4}$對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)$f(x)=\frac{e^x}{{a{x^2}+bx+1}}$,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當(dāng)x≥0時(shí),f(x)≥1總成立,求實(shí)數(shù)b的取值范圍;
(Ⅲ)若a>0,b=0,若f(x)存在兩個(gè)極值點(diǎn)x1,x2,求證;f(x1)+f(x2)<e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{e^x}{{a{x^2}+bx+1}}$,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當(dāng)x≥1時(shí),f(x)≥1總成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了估計(jì)某校的一次數(shù)學(xué)考試情況,現(xiàn)從該校參加考試的600名學(xué)生中隨機(jī)抽出60名學(xué)生,其成績(jī)(百分制)均在[40,100)上,將這些成績(jī)分成六段[40,50),[50,60)…[90,100),后得到如圖所示部分頻率分布直方圖.
(1)求抽出的60名學(xué)生中分?jǐn)?shù)在[70,80)內(nèi)的人數(shù);
(2)若規(guī)定成績(jī)不小于85分為優(yōu)秀,則根據(jù)頻率分布直方圖,估計(jì)該校優(yōu)秀人數(shù).
(3)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某高中計(jì)劃從全校學(xué)生中按年級(jí)采用分層抽樣方法抽取20名學(xué)生進(jìn)行心理測(cè)試,其中高三有學(xué)生900人,已知高一與高二共抽取了14人,則全校學(xué)生的人數(shù)為3000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知過拋物線y2=2px(p>0)的焦點(diǎn),斜率為$2\sqrt{2}$的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),且$|AB|=\frac{9}{2}$.
(1)求該拋物線的方程;
(2)過拋物線上的一個(gè)點(diǎn)M(1,2)作兩條垂直的直線MP,MQ分別交拋物線于P,Q兩點(diǎn),試問:直線PQ是否過定點(diǎn),如果過,請(qǐng)求出來,不過,請(qǐng)說明理由.
(3)求原點(diǎn)O到直線PQ的最大距離為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對(duì)于任意兩個(gè)正實(shí)數(shù)a,b,定義a*b=λ×$\frac{a}$.其中常數(shù)λ∈($\frac{\sqrt{2}}{2}$,1),“×”是通常的實(shí)數(shù)乘法運(yùn)算,若a≥b>0,a*b與b*a都是集合{x|x=$\frac{n}{2}$,n∈Z}中的元素,則a*b=$\frac{3}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案