已知數(shù)列{an}是首項a1=1的等差數(shù)列,其前n項和為Sn,數(shù)列{bn}是首項b1=2的等比數(shù)列,且把S2=16,b1b3=b4.
(1)求數(shù)列{an}和數(shù)列{bn}的通項公式.
(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k=1,2,3,…,求數(shù)列{cn}的前2n+1項和T2n+1.
【答案】
分析:(1)a
n=1+(n-1)d,
,由b
1b
3=b
4,得q=
=b
1=2,由此能求出數(shù)列{a
n}和數(shù)列{b
n}的通項公式.
(2)T
2n+1=c
1+a
1+(a
2+b
1)+a
3+(a
4+2•b
2)+…+a
2n-1+(a
2n+nb
n)=1+S
2n+(b
1+2b
2+…+nb
n),令A(yù)=b
1+2b
2+…+nb
n,利用錯位相減法能求出數(shù)列{c
n}的前2n+1項和T
2n+1.
解答:解:(1)設(shè)數(shù)列{a
n}的公差為d,數(shù)列{b
n}的公比為q,
則a
n=1+(n-1)d,
,
由b
1b
3=b
4,得q=
=b
1=2,
∴a
n=2n-1,
.
(2)T
2n+1=c
1+a
1+(a
2+b
1)+a
3+(a
4+2•b
2)+…+a
2n-1+(a
2n+nb
n)
=1+S
2n+(b
1+2b
2+…+nb
n),
令A(yù)=b
1+2b
2+…+nb
n,
則A=2+2•2
2+…+n•2
n,
2A=2
2+2•2
3+…+(n-1)•2
n+n•2
n+1,
∴-A=2+2
2+…+2
n-n•2
n+1,
∴
,
∵
=4n
2,
∴
=3+4n
2+(n-1)•2
n+1.
點評:本題考查數(shù)列通項公式的求法,考查數(shù)列的前n項和的求法.解題時要認(rèn)真審題,仔細解答,注意錯位相減法的合理運用.