4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(modm),例如11=4(mod7),如圖所示的程序框圖的算法源于我國(guó)古代聞名中外的《中國(guó)剩余定理》,執(zhí)行該程序框圖,則輸出的n=(  )
A.14B.15C.16D.17

分析 該程序框圖的作用是求被3和5除后的余數(shù)為2的數(shù),根據(jù)所給的選項(xiàng),得出結(jié)論.

解答 解:該程序框圖的作用是求被3和5除后的余數(shù)為2的數(shù),
在所給的選項(xiàng)中,滿足被3和5除后的余數(shù)為2的數(shù)只有17,
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)點(diǎn)M(1,1)的直線與雙曲線$\frac{x^2}{4}-\frac{y^2}{3}=1$交于A,B兩點(diǎn),且點(diǎn)M平分AB,則直線AB的方程為( 。
A.4x+3y-7=0B.3x+4y+1=0C.3x-4y-7=0D.4y-3x-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.將一枚均勻硬幣先后拋兩次,恰好有一次出現(xiàn)正面的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知0<α<$\frac{π}{2}$,3sin(π-α)=-2cos(π+α).
(1)求$\frac{4sinα-2cosα}{5cosα+3sinα}$的值;
 (2)求$cos2α+sin(α+\frac{π}{2})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在如圖所示的空間幾何體中,EC⊥平面ABCD,四邊形ABCD是菱形,CE∥BF,且CE=2BF,G,H,P分別為AF,DE,AE的中點(diǎn).求證:
(Ⅰ)GH∥平面BCEF;
(Ⅱ)FP⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=|x-4|+|x-2|.
(1)求不等式f(x)>2的解集;
(2)設(shè)f(x)的最小值為M,若2x+a≥M的解集包含[0,1],求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為創(chuàng)建全國(guó)文明城市,某區(qū)向各事業(yè)行政單位征集“文明過(guò)馬路”義務(wù)督導(dǎo)員.從符合條件的600名志愿者中隨機(jī)抽取100名,按年齡作分組如下:[20,25),[25,30),[30,35),[35,40),[40,45],并得到如下頻率分布直方圖.
(I)求圖中x的值,并根據(jù)頻率分布直方圖統(tǒng)計(jì)這600名志愿者中年齡在[30,40]的人數(shù);
(II)在抽取的100名志愿者中按年齡分層抽取5名參加區(qū)電視臺(tái)“文明伴你行”節(jié)目錄制,再?gòu)倪@5名志愿者中隨機(jī)抽取2名到現(xiàn)場(chǎng)分享勸導(dǎo)制止行人闖紅燈的經(jīng)歷,求至少有1名年齡不低于35歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若log3a<log3b<0,則( 。
A.0<b<a<1B.0<a<b<1C.b>a>1D.a>b>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是矩形,平面PAB⊥平面ABCD,E是PA的中點(diǎn),且PA=PB=AB=4,$BC=\sqrt{2}$.
(Ⅰ)求證:PC∥平面EBD;
(Ⅱ) 求三棱錐A-PBD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案