分析 (1)f(x)=|x-4|+|x-2|=$\left\{\begin{array}{l}{6-2x.x≤2}\\{2,2<x<4}\\{2x-6,x≥4}\end{array}\right.$.分x≤2時,;2<x<4,x≥4,解f(x)>2.
(2))由|x-4|+|x-2|≥2,得M=2,由2x+a≥M的解集包含[0,1],得20+a≥2,21+a≥2
解答 解:(1)f(x)=|x-4|+|x-2|=$\left\{\begin{array}{l}{6-2x.x≤2}\\{2,2<x<4}\\{2x-6,x≥4}\end{array}\right.$.
∴當(dāng)x≤2時,f(x)>2,6-2x>2,解得x<2;
當(dāng)2<x<4時,f(x)>2得2>2,無解;
當(dāng)x≥4時,f(x)>2得2x-6>2,解得>4.
所以不等式f(x)>2的解集為(-∞,2)∪(4,+∞).
(2))∵|x-4|+|x-2|≥2,∴M=2,
∵2x+a≥M的解集包含[0,1],
∴20+a≥2,21+a≥2,∴a≥1.
故a的取值范圍為:[1,+∞)
點評 本題考查了絕對值不等式的解法,及恒成立問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 14 | B. | 15 | C. | 16 | D. | 17 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ①③④ | C. | ①②④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=m,b=m | B. | b=m,a=m | C. | a=f(m),b=f(m) | D. | b=f(m),a=f(m) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com