【題目】某校學生會為了解該校學生對2017年全國兩會的關注情況,隨機調查了該校200名學生,并將這200名學生分為對兩會“比較關注”與“不太關注”兩類.已知這200名學生中男生比女生多20人,對兩會“比較關注”的學生中男生人數與女生人數之比為,對兩會“不太關注”的學生中男生比女生少5人.
(1)根據題意建立列聯表,并判斷是否有的把握認為男生與女生對兩會的關注有差異?
(2)該校學生會從對兩會“比較關注”的學生中根據性別進行分層抽樣,從中抽取7人,再從這7人中隨機選出2人進行回訪,求這2人全是男生的概率.
參考公式和數據:,其中.
【答案】(1)沒有的把握認為男生與女生對兩會的關注有差異;(2).
【解析】
(1)“比較關注”的學生中男生人數與女生人數之比為,構造方程求得列聯表數據,依據公式計算得到的觀測值,可知無的把握;(2)通過分層抽樣確定抽取的男女生人數,再列舉出所有可能的結果,根據古典概型得到結果.
(1)由這名學生中男生比女生多人,可得男生人數為,女生人數為,
設男生中“不太關注”的人數為,則男生中“比較關注”的人數為,
由“不太關注”的學生中男生比女生少人,可得女生中“不太關注”的人數為,
則女生中“比較關注”的人數為,
由“比較關注”的學生中男生人數與女生人數之比為,可得,解得,
則列聯表如下:
比較關注 | 不太關注 | 合計 | |
男生 | |||
女生 | |||
合計 |
則的觀測值,
所以沒有的把握認為男生與女生對兩會的關注有差異.
(2)由題意得男生抽人、女生抽人,
記這名男生分別為,名女生分別為
則所有的可能情況為,,,,,,,,,,,,,,,,,,,,,共種,其中人全是男生的有,,,,,,共種,
故所求概率.
科目:高中數學 來源: 題型:
【題目】在中學生綜合素質評價某個維度的測評中,分“優(yōu)秀、合格、尚待改進”三個等級進行學生互評.某校高二年級有男生500人,女生400人,為了了解性別對該維度測評結果的影響,采用分層抽樣方法從高二年級抽取了45名學生的測評結果,并作出頻數統計表如下:
表1:男生
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數 | 15 | 5 |
表2:女生
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數 | 15 | 3 |
(1)由表中統計數據填寫下邊列聯表:
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | 總計 |
(2)試采用獨立性檢驗進行分析,能否在犯錯誤的概率不超過0.1的前提下認為“測評結果優(yōu)秀與性別有關”.
參考數據與公式:,其中.
臨界值表:
0.1 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且2a1+3a2=1, =9a2a6.
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數列的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓:的左、右焦點分別為,軸,直線交軸于點,,為橢圓上的動點,的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市對創(chuàng)“市級示范性學!钡募住⒁覂伤鶎W校進行復查驗收,對辦學的社會滿意度一項評價隨機訪問了20為市民,這20位市民對這兩所學校的評分(評分越高表明市民的評價越好)的數據如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績分成了四個等級:成績在區(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請用莖葉圖表示上面的數據,并通過觀察莖葉圖,對兩所學校辦學的社會滿意度進行比較,寫出兩個統計結論;
(2)估計哪所學校的市民的評分等級為級或級的概率大,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的兩條互相垂直的直線與拋物線相交于不同于原點的兩點,且軸,的面積為16.
(1)求拋物線的標準方程;
(2)已知點,,為拋物線上不同的三點,若,試問:直線是否過定點?若過定點,求出定點坐標;若不過定點,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出以下結論:
①命題“若,則”的逆否命題“若,則”;
②“”是“”的充分條件;
③命題“若,則方程有實根”的逆命題為真命題;
④命題“若,則且”的否命題是真命題.
其中錯誤的是__________.(填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】自由購是一種通過自助結算購物的形式.某大型超市為調查顧客自由購的使用情況,隨機抽取了100人,調查結果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現隨機抽取1名顧客,試估計該顧客年齡在且未使用自由購的概率;
(Ⅱ)從被抽取的年齡在使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在的概率;
(Ⅲ)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環(huán)保購物袋.若某日該超市預計有5000人購物,試估計該超市當天至少應準備多少個環(huán)保購物袋?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com