1.若數(shù)列{an}滿足a1=1,a2=$\frac{2}{3}$,2an-1an+1=anan+1+an-1an(n≥2),則an=( 。
A.$\frac{2}{n+1}$B.$\frac{2}{n+2}$C.($\frac{2}{3}$)nD.($\frac{2}{3}$)n-1

分析 方法一:由于本題是選擇題,先求出a3的值,分別驗(yàn)證,A,B,C,D哪個成立即可.
方法二,由2an-1an+1=anan+1+an-1an,同除以anan+1an-1,得到$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$,即{$\frac{1}{{a}_{n}}$}為等差數(shù)列,問題得以解決.

解答 解:方法一:∵a1=1,a2=$\frac{2}{3}$,2an-1an+1=anan+1+an-1an(n≥2),
∴2a1a3=a2a3+a1a2,
∴a3=$\frac{1}{2}$,
當(dāng)n=1時(shí),對于B,不成立,C不成立,
當(dāng)n=3是,D不成立,
方法二:2an-1an+1=anan+1+an-1an
∴$\frac{2}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+$\frac{1}{{a}_{n+1}}$,
∴{$\frac{1}{{a}_{n}}$}為等差數(shù)列,
∵$\frac{1}{{a}_{1}}$=1,$\frac{1}{{a}_{2}}$=$\frac{3}{2}$,
∴d=$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{1}}$=$\frac{3}{2}$-1=$\frac{1}{2}$,
∴$\frac{1}{{a}_{n}}$=1+$\frac{1}{2}$(n-1)=$\frac{1}{2}$(n+1),
∴an=$\frac{2}{n+1}$
故選:A.

點(diǎn)評 本題考查了數(shù)列的遞推公式,關(guān)鍵是構(gòu)造等差數(shù)列,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在銳角△ABC中,$\frac{AC}{BC}$=$\frac{3}{2}$,∠B=$\frac{π}{3}$求:sin(A+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)i是虛數(shù)單位,復(fù)數(shù)z滿足(1+i)z=2i50,則z的共軛復(fù)數(shù)$\overline{z}$為( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn=n2+2n,在等比數(shù)列{bn}中,b1+b3=5.b4+b6=40.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)令cn=$\left\{\begin{array}{l}{\frac{2}{{S}_{n}},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$,設(shè)數(shù)列{cn}的前n項(xiàng)和為Tn,求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.平面α∥平面β,點(diǎn)A、C在平面α內(nèi),點(diǎn)B、D在平面β內(nèi),直線AB與直線CD相交于點(diǎn)S,設(shè)AS=18,BS=9,CD=24,求CS的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,若z=x+ay的最大值是2,則實(shí)數(shù)a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)=$\sqrt{\frac{1}{lgx}-2}$的定義域?yàn)椋?,$\sqrt{10}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.己知函數(shù)f(x)=ex(2x-1)-ax+a(a∈R),e為自然對數(shù)的底數(shù).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)①若存在實(shí)數(shù)x,滿足f(x)<0,求實(shí)數(shù)a的取值范圍:②若有且只有唯一整數(shù)x0,滿足f(x0)<0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知雙曲線的一條漸近線方程是y=$\sqrt{3}$x,它的一個焦點(diǎn)在拋物線y2=8x的準(zhǔn)線上,則該雙曲線的標(biāo)準(zhǔn)方程為x2-$\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

同步練習(xí)冊答案