【題目】某企業(yè)對設(shè)備進(jìn)行升級改造,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了100件產(chǎn)品作為樣本,檢測一項質(zhì)量指標(biāo)值,該項質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的產(chǎn)品視為合格品,否則視為不合格品,如圖是設(shè)備改造前樣本的頻率分布直方圖,下表是設(shè)備改造后樣本的頻數(shù)分布表.

圖:設(shè)備改造前樣本的頻率分布直方圖

表:設(shè)備改造后樣本的頻率分布表

質(zhì)量指標(biāo)值

頻數(shù)

2

18

48

14

16

2

1)求圖中實數(shù)的值;

2)企業(yè)將不合格品全部銷毀后,對合格品進(jìn)行等級細(xì)分,質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為一等品,每件售價240元;質(zhì)量指標(biāo)值落在區(qū)間內(nèi)的定為二等品,每件售價180元;其他的合格品定為三等品,每件售價120元,根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級產(chǎn)品的概率.若有一名顧客隨機(jī)購買兩件產(chǎn)品支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.

【答案】12)詳見解析

【解析】

1)由頻率分布直方圖中所有頻率(小矩形面積)之和為1可計算出值;

(2)由頻數(shù)分布表知一等品、二等品、三等品的概率分別為.,選2件產(chǎn)品,支付的費(fèi)用的所有取值為240300,360420,480,由相互獨立事件的概率公式分別計算出概率,得概率分布列,由公式計算出期望.

解:(1)據(jù)題意,得

所以

2)據(jù)表1分析知,從所有產(chǎn)品中隨機(jī)抽一件是一等品、二等品、三等品的概率分別為.

隨機(jī)變量的所有取值為240,300,360,420,480.

隨機(jī)變量的分布列為

240

300

360

420

480

所以(元)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面向量,滿足:||2,||1

1)若(2)=1,求的值;

2)設(shè)向量的夾角為θ.若存在tR,使得,求cosθ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù),對任意,都有成立,若函數(shù)的圖象關(guān)于直線對稱,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求證:;

(2)當(dāng)時,若不等式恒成立,求實數(shù)的取值范圍;

(3)若,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知aR,函數(shù)f(x)=(-x2ax)ex(xR).

(1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)f(x)(-1,1)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的方程有且只有一個實數(shù)根,求實數(shù)的取值范圍;

2)若函數(shù)的圖象總在函數(shù)圖象的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】虛擬現(xiàn)實()技術(shù)被認(rèn)為是經(jīng)濟(jì)發(fā)展的新增長點,某地區(qū)引進(jìn)技術(shù)后,市場收入(包含軟件收入和硬件收入)逐年翻一番,據(jù)統(tǒng)計該地區(qū)市場收入情況如圖所示,則下列說法錯誤的是( )

A.該地區(qū)2019年的市場總收入是2017年的4

B.該地區(qū)2019年的硬件收入比2017年和2018年的硬件收入總和還要多

C.該地區(qū)2019年的軟件收入是2018年的軟件收入的3

D.該地區(qū)2019年的軟件收入是2017年的軟件收入的6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若曲線的切線方程為,求實數(shù)的值;

2)若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項為1,各項均為正數(shù),其前項和為,,.

1)求,的值;

2)求證:數(shù)列為等差數(shù)列;

3)設(shè)數(shù)列滿足,,求證:.

查看答案和解析>>

同步練習(xí)冊答案