設(shè)函數(shù)

(Ⅰ)求函數(shù)的極大值;

(Ⅱ)若時(shí),恒有成立(其中是函數(shù)的導(dǎo)函數(shù)),試確定實(shí)數(shù)的取值范圍.

 

【答案】

(Ⅰ)∵,且,

當(dāng)時(shí),得;當(dāng)時(shí),得;

的單調(diào)遞增區(qū)間為

的單調(diào)遞減區(qū)間為

故當(dāng)時(shí),有極大值,其極大值為

(Ⅱ)∵,

當(dāng)時(shí),,

在區(qū)間內(nèi)是單調(diào)遞減.

,∴

此時(shí),

當(dāng)時(shí),

,∴

此時(shí),

綜上可知,實(shí)數(shù)的取值范圍為

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對(duì)稱軸是直線x=
π8

(Ⅰ)求φ;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2sin(2x+
π4
)+1,
(I)用五點(diǎn)法畫出它在一個(gè)周期內(nèi)的閉區(qū)間上的圖象;
(II)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的最大值
(III)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=msinx+
2
cosx,(m為常數(shù),且m>0),已知函數(shù)f(x)的最大值為2.
(I)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(II)已知a,b,c是△ABC的三邊,且b2=ac.若,f(B)=
3
,求B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義在R上的函數(shù)f(x)=a0x4+a1x3+a2x+a3(a0,a1,a2,a3∈R),當(dāng)x=-1時(shí),f(x)取極大值
2
3
,且函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,0)對(duì)稱.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)試在函數(shù)y=f(x)的圖象上求兩點(diǎn),使以這兩點(diǎn)為切點(diǎn)的切線互相垂直,且切點(diǎn)的橫坐標(biāo)都在[-
2
,
2
]
上;
(Ⅲ)設(shè)xn∈[
1
2
,1)
ym∈(-
2
,-
2
3
2
]
,求證:|f(xn)-f(ym)|<
4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)一模)設(shè)函數(shù)f(x)和x都是定義在集合
2
上的函數(shù),對(duì)于任意的
2
x,都有x成立,稱函數(shù)x與y在l上互為“l(fā)函數(shù)”.
(1)函數(shù)f(x)=2x與g(x)=sinx在M上互為“H函數(shù)”,求集合M;
(2)若函數(shù)f(x)=ax(a>0且a≠1)與g(x)=x+1在集合M上互為“x函數(shù)”,求證:a>1;
(3)函數(shù)m與m在集合M={x|x>-1且x≠2k-3,k∈N*}上互為“m函數(shù)”,當(dāng)m時(shí),m,且m在m上是偶函數(shù),求函數(shù)m在集合M上的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案