【題目】已知函數(shù)

(1)當(dāng)時(shí),求過點(diǎn)處的切線方程

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的取值范圍.

【答案】(1) .

(2) .

【解析】分析:(1)求出,的值可得切點(diǎn)坐標(biāo),由的值,可得切線斜率,利用點(diǎn)斜式可得曲線在點(diǎn)處的切線方程;(2) ,先排除不合題意,當(dāng)時(shí)再討論兩種情況:(i)當(dāng)時(shí), ,則無零點(diǎn),不符合題意,(ii)當(dāng)時(shí),利用函數(shù)單調(diào)性結(jié)合零點(diǎn)存在定理可得在區(qū)間上有一個(gè)零點(diǎn),在區(qū)間上有一個(gè)零點(diǎn),從而可得結(jié)果.

詳解(1)當(dāng)時(shí), ,

當(dāng)時(shí), ,所以點(diǎn)

又由,得,

所以,所以切線方程為 .

(2)函數(shù)f(x)的定義域?yàn)椋?/span> .

,

當(dāng)a≤0時(shí),易得,則上單調(diào)遞增,

至多只有一個(gè)零點(diǎn),不符合題意,舍去.

②當(dāng)a>0時(shí),令得: x=a,則

+

0

-

極大

=f(a)=a(lna+a-1)

設(shè)g(x)=lnx+x-1,∵,則g(x)上單調(diào)遞增.

又∵g(1)=0,∴x<1時(shí), g(x)<0; x>1時(shí), g(x)>0.

(i)當(dāng)時(shí), ,則f(x)無零點(diǎn),

不符合題意,舍去 .

(ii)當(dāng)a>1時(shí),

,∴在區(qū)間上有一個(gè)零點(diǎn),

設(shè)h(x)=lnx-x (x>1),∵,

h(x)上單調(diào)遞減,則,

,

f(x)在區(qū)間(a,3a-1)上有一個(gè)零點(diǎn),綜合知f(x)恰有兩個(gè)零點(diǎn).

綜上所述,當(dāng)f(x)有兩個(gè)不同零點(diǎn)時(shí), a的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)已知過原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

2當(dāng), 時(shí),對(duì)任意,有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ( 為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),若直線與曲線沒有公共點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)設(shè)直線l過點(diǎn)(2,3)且與直線2x+y+1=0垂直,lx軸,y軸分別交于AB兩點(diǎn),求|AB|

2)求過點(diǎn)A4,-1)且在x軸和y軸上的截距相等的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓C: 經(jīng)過點(diǎn)P(1, ),離心率e= ,直線l的方程為x=4.

(1)求橢圓C的方程;
(2)AB是經(jīng)過右焦點(diǎn)F的任一弦(不經(jīng)過點(diǎn)P),設(shè)直線AB與直線l相交于點(diǎn)M,記PA,PB,PM的斜率分別為k1 , k2 , k3 . 問:是否存在常數(shù)λ,使得k1+k2=λk3?若存在,求λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

)求函數(shù)的單調(diào)區(qū)間和極值;

)當(dāng)時(shí),若函數(shù)在區(qū)間上存在唯一零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法的錯(cuò)誤的是( 。

A. 經(jīng)過定點(diǎn)的傾斜角不為的直線的方程都可以表示為

B. 經(jīng)過定點(diǎn)的傾斜角不為的直線的方程都可以表示為

C. 不經(jīng)過原點(diǎn)的直線的方程都可以表示為

D. 經(jīng)過任意兩個(gè)不同的點(diǎn)直線的方程都可以表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點(diǎn),且.

(1)求證:平面平面;

(2)求證:平面P

查看答案和解析>>

同步練習(xí)冊(cè)答案