【題目】在如圖所示的幾何體中,四邊形是正方形, 平面, 分別為的中點,且.

(1)求證:平面平面;

(2)求證:平面P;

【答案】(1)證明過程詳見解析(2)證明過程詳見解析;

【解析】

(1)由三角形中位線定理可得,由正方形的性質可得,,由線面平行的判定定理可得平面, 平面,從而可得結果;(2)由線面垂直的性質證明,正方形的性質可得,結合,可得平面,從而可得平面平面 ;

(1)∵分別為的中點,

,

又∵四邊形是正方形,

,∴,

在平面外, 在平面內,

平面, 平面,

又∵都在平面內且相交,

∴平面平面.

(2)證明:由已知平面,

平面.

平面,∴.

∵四邊形為正方形,∴

,∴平面,

中,∵分別為的中點,

,∴平面.

平面,∴平面平面.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求過點處的切線方程

(2)若函數(shù)有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店為了解氣溫對某產品銷售量的影響,隨機記錄了該商店月份中天的日銷售量(單位:千克)與該地當日最低氣溫(單位:℃)的數(shù)據(jù),如表所示:

(1)求的回歸方程

(2)判斷之間是正相關還是負相關;若該地月份某天的最低氣溫為,請用(1)中的回歸方程預測該商店當日的銷售量.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若不等式的解集為,求實數(shù)的值;

(2)若不等式對一切實數(shù)恒成立,求實數(shù)的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線經過點,其傾斜角為,以原點為極點,以軸為非負半軸為極軸,與坐標系取相同的長度單位,建立極坐標系.設曲線的極坐標方程為.

(1)若直線與曲線有公共點,求傾斜角的取值范圍;

(2)設為曲線上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙的半徑為,圓心的坐標為,其中為該圓的兩條切線,為坐標原點,為切點,在第一象限,在第四象限.

)若時,求切線,的斜率.

)若時,求外接圓的標準方程.

)當點在軸上運動時,將表示成的函數(shù),并求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】七巧板是古代中國勞動人民發(fā)明的一種中國傳統(tǒng)智力玩具,它由五塊等腰直角三角形,一塊正方形和一塊平行四邊形共七塊板組成.清陸以湉《冷廬雜識》卷一中寫道:近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余.體物肖形,隨手變幻,蓋游戲之具,足以排悶破寂,故世俗皆喜為之.如圖是一個用七巧板拼成的正方形,若在此正方形中任取一點,則此點取自陰影部分的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖(1)是一直角墻角,,墻角的兩堵墻面和地面兩兩互相垂直.是一塊長米,寬米的板材,現(xiàn)欲用板材與墻角圍成一個直棱柱空間堆放谷物.

(1)若按如圖(1)放置,如何放置板材才能使這個直棱柱空間最大?

(2)由于墻面使用受限,面只能使用米,面只能使用米.此矩形板材可以折疊圍成一個直四棱柱空間,如圖(2),如何折疊板材才能使這個空間最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,過且垂直于軸的焦點弦的弦長為,過的直線交橢圓兩點,且的周長為.

(1)求橢圓的方程;

(2)已知直線,互相垂直,直線且與橢圓交于點兩點,直線且與橢圓交于,兩點.求的值.

查看答案和解析>>

同步練習冊答案