A. | $-\frac{1}{7}$ | B. | 7 | C. | $\frac{1}{7}$ | D. | -7 |
分析 利用同角三角函數(shù)的基本關系求得cosθ的值,可得tanθ的值,再利用兩角差的正切公式,求得要求式子的值.
解答 解:已知$θ∈({\frac{π}{2},π}),\;\;sinθ=\frac{3}{5}$,∴cosθ=-$\sqrt{{1-sin}^{2}θ}$=-$\frac{4}{5}$,∴tanθ=$\frac{sinθ}{cosθ}$=-$\frac{3}{4}$,
∴tan($θ+\frac{π}{4}$)=$\frac{1+tanθ}{1-tanθ}$=$\frac{1}{7}$,
故選:C.
點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的正切公式的應用,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $-\sqrt{3}$ | C. | -2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [4,8) | B. | (1,+∞) | C. | (4,8) | D. | (1,8) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有最大值$\frac{{e}^{2}}{8}$ | B. | 有最小值$\frac{{e}^{2}}{8}$ | C. | 有最大值$\frac{{e}^{2}}{2}$ | D. | 有最小值$\frac{{e}^{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com