如圖所示,CD切⊙O于B,CO的延長線交⊙O于A,若∠C=36°,則∠ABD的度數(shù)是( )

A.72° B.63° C.54° D.36°

 

B

【解析】

試題分析:連結(jié)OB,則∠OBC=90°.由已知條件求出∠A=27°.由此能求出∠ABD的度數(shù).

【解析】
連結(jié)OB.∵CD為⊙O的切線,∴∠OBC=90°.

∵∠C=36°,∴∠BOC=54°.

又∵∠BOC=2∠A,∴∠A=27°.

∴∠ABD=∠A+∠C=27°+36°=63°.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-2 1.1線性變換與二階矩陣練習(xí)卷(解析版) 題型:填空題

將曲線 ,上所有點的橫坐標(biāo)擴(kuò)大到原來的2倍,縱坐標(biāo)縮小到原來的倍后,得到的曲線的焦點坐標(biāo)為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 3.2平面與圓柱面的截線練習(xí)卷(解析版) 題型:填空題

底面直徑為12cm的圓柱被與底面成30°的平面所截,截口是一個橢圓,該橢圓的長軸長 ,短軸長 ,離心率為 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:填空題

(2014•河?xùn)|區(qū)二模)如圖,AB是⊙O的直徑,PB,PC分別切⊙O于B,C,若∠ACE=38°,則∠P= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過 B作BD⊥AC于D,BD交⊙O于E點,若AE平分

∠BAD,則∠BAD=( )

A.30° B.45° C.50° D.60°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.4弦切角的性質(zhì)練習(xí)卷(解析版) 題型:選擇題

如圖,△ABC內(nèi)接于圓⊙O,CT切⊙O于C,∠ABC=100°,∠BCT=40°,則∠AOB=( )

A.30° B.40° C.80° D.70°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:填空題

(2010•嘉興一模)如圖所示.△ABC內(nèi)接于⊙O,若∠OAB=28°,則∠C的大小是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年新人教A版選修4-1 2.1圓周角定理練習(xí)卷(解析版) 題型:選擇題

圖中∠BOD的度數(shù)是( )

A.55° B.110° C.125° D.150°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年北師大版選修1-2 3.2數(shù)學(xué)證明練習(xí)卷(解析版) 題型:選擇題

(2014•揭陽三模)對于正實數(shù)α,Mα為滿足下述條件的函數(shù)f(x)構(gòu)成的集合:?x1,x2∈R且x2>x1,有﹣α(x2﹣x1)<f(x2)﹣f(x1)<α(x2﹣x1).下列結(jié)論中正確的是( )

A.若f(x)∈Mα1,g(x)Mα2,則f(x)•g(x)∈Mα1•α2

B.若f(x)∈Mα1,g(x)∈Mα2,且g(x)≠0,則

C.若f(x)∈Mα1,g(x)∈Mα2,則f(x)+g(x)∈Mα1+α2

D.若f(x)∈Mα1,g(x)∈Mα2,且α1>α2,則f(x)﹣g(x)∈Mα1﹣α2

 

查看答案和解析>>

同步練習(xí)冊答案