【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動(dòng)點(diǎn),且

(1)求證:不論為何值,總有平面BEF⊥平面ABC;

(2)當(dāng)λ為何值時(shí),平面BEF⊥平面ACD ?

【答案】1)見解析(2λ

【解析】(1)證明:∵AB⊥平面BCD,∴AB⊥CD.

∵CD⊥BC,且AB∩BCB,∴CD⊥平面ABC.

λ(0λ1),

不論λ為何值,恒有EF∥CD.

EF平面ABC,EF平面BEF.

不論λ為何值恒有平面BEF⊥平面ABC.

(2)解:由(1)知,BE⊥EF,平面BEF⊥平面ACD∴BE⊥平面ACD.∴BE⊥AC.

∵BCCD1,∠BCD90°,∠ADB60°,

BD,ABtan60°.

AC.

AB2AE·AC,得AE.λ.

故當(dāng)λ時(shí),平面BEF平面ACD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線不過(guò)原點(diǎn).

(1)求過(guò)點(diǎn)且與直線垂直的直線的方程;

(2)直線與兩坐標(biāo)軸相交于AB兩點(diǎn),若直線與點(diǎn)A、B的距離相等,且過(guò)原點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓關(guān)于直線對(duì)稱的圓為.

(1)求圓的方程;

(2)過(guò)點(diǎn)作直線與圓交于兩點(diǎn), 是坐標(biāo)原點(diǎn),是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)分別到兩定點(diǎn) 連線的斜率之乘積為,設(shè)的軌跡為曲線 , 分別為曲線的左右焦點(diǎn),則下列命題中:

(1)曲線的焦點(diǎn)坐標(biāo)為, ;

(2)若,則 ;

(3)當(dāng)時(shí), 的內(nèi)切圓圓心在直線上;

(4)設(shè),則的最小值為.

其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某微信群中有甲、乙、丙、丁、戊五個(gè)人玩搶紅包游戲,現(xiàn)有4個(gè)紅包,每人最多搶一個(gè),且紅包被全部搶完,4個(gè)紅包中有2個(gè)6元,1個(gè)8元,1個(gè)10元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有( )

A. 18種 B. 24種 C. 36種 D. 48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高二年級(jí)學(xué)生中隨機(jī)抽取了20名學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿分100分,成績(jī)均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到如圖所示的頻率分布直方圖.

求圖中實(shí)數(shù)a的值;

若該校高二年級(jí)共有學(xué)生600名,試估計(jì)該校高二年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

若從數(shù)學(xué)成績(jī)?cè)赱60,70)與[90,100]兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值大于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= sin(2x+ ),給出下列四個(gè)命題:
①函數(shù)f(x)在區(qū)間[ ]上是減函數(shù);
②直線x= 是f(x)的圖象的一條對(duì)稱軸;
③函數(shù)f(x)的圖象可以由函數(shù)y= sin2x的圖象向左平移 而得到;
④函數(shù)f(x)的圖象的一個(gè)對(duì)稱中心是( ,0).
其中正確的個(gè)數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知α,β∈( ,π),sin(α+β)=﹣ ,sin(β﹣ )= ,則cos(α+ )=(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線 為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線的極坐標(biāo)方程為

(Ⅰ)分別求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線交曲線, 兩點(diǎn),交曲線, 兩點(diǎn),求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案