【題目】動點分別到兩定點 連線的斜率之乘積為,設的軌跡為曲線, , 分別為曲線的左右焦點,則下列命題中:
(1)曲線的焦點坐標為, ;
(2)若,則 ;
(3)當時, 的內(nèi)切圓圓心在直線上;
(4)設,則的最小值為.
其中正確命題的序號是__________.
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=tx2-(22t+60)x+144t(x>0).
(1)要使f(x)≥0恒成立,求t的最小值;
(2)令f(x)=0,求使t>20成立的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】黃種人群中各種血型的人所占的比例如下:
血型 | A | B | AB | O |
該血型的人所占比例(%) | 28 | 29 | 8 | 35 |
已知同種血型的人可以輸血,O型血可以輸給任何一種血型的人,其他不同血型的人不能互相輸血,小明是B型血,若小明因病需要輸血,問:
(1)任找一個人,其血可以輸給小明的概率是多少?
(2)任找一個人,其血不能輸給小明的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某觀測站在港口A的南偏西40°方向的C處,測得一船在距觀測站31海里的B處,正沿著從港口出發(fā)的一條南偏東20°的航線上向港口A開去,當船走了20海里到達D處,此時觀測站又測得CD等于21海里,問此時船離港口A處還有多遠?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(且為常數(shù)).
(1)當時,討論函數(shù)在的單調(diào)性;
(2)設可求導數(shù),且它的導函數(shù)仍可求導數(shù),則再次求導所得函數(shù)稱為原函數(shù)的二階函數(shù),記為,利用二階導函數(shù)可以判斷一個函數(shù)的凹凸性.一個二階可導的函數(shù)在區(qū)間上是凸函數(shù)的充要條件是這個函數(shù)在的二階導函數(shù)非負.
若在不是凸函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個單位后得到函數(shù)g(x)的圖象,若對滿足|f(x1)﹣g(x2)|=2的x1、x2有|x1﹣x2|min= ,則φ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
(1)求證:不論為何值,總有平面BEF⊥平面ABC;
(2)當λ為何值時,平面BEF⊥平面ACD ?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務,已知這200位銷售員去年完成銷售額都在區(qū)間(單位:百萬元)內(nèi),現(xiàn)將其分成5組,第1組,第2組,第3組,第4組,第5組對應的區(qū)間分別為, , , , ,繪制出頻率分布直方圖.
(1)求的值,并計算完成年度任務的人數(shù);
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應抽取的人數(shù);
(3)現(xiàn)從(2)中完成年度任務的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一個周期內(nèi)的圖象如圖所示.
(1)求f(x)的表達式;
(2)在△ABC中,f(C+ )=﹣1且 <0,求角C.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com