【題目】對(duì)于自然數(shù)數(shù)組,如下定義該數(shù)組的極差:三個(gè)數(shù)的最大值與最小值的差.如果的極差,可實(shí)施如下操作:若中最大的數(shù)唯一,則把最大數(shù)減2,其余兩個(gè)數(shù)各增加1;若中最大的數(shù)有兩個(gè),則把最大數(shù)各減1,第三個(gè)數(shù)加2,此為一次操作,操作結(jié)果記為,其級(jí)差為.若,則繼續(xù)對(duì)實(shí)施操作,…,實(shí)施次操作后的結(jié)果記為,其極差記為.例如:,.
(1)若,求和的值;
(2)已知的極差為且,若時(shí),恒有,求的所有可能取值;
(3)若是以4為公比的正整數(shù)等比數(shù)列中的任意三項(xiàng),求證:存在滿足.
【答案】(1),,;(2)的取值僅能是2;(3)詳見(jiàn)解析.
【解析】
試題(1)由數(shù)組的極差的定義,可知,,這時(shí)三數(shù)為,第二次操作后,,這時(shí)三數(shù)為,第三次操作后,,,這時(shí)三數(shù)為,第四次操作后,,這時(shí)三數(shù)為,第五次操作后,,這時(shí)三數(shù)為,第六次操作后,,這時(shí)三數(shù)為,,第2014次操作后,,這時(shí)三數(shù)為;(2)已知的極差為且,這時(shí)極差最小值為,當(dāng)時(shí),這時(shí)是三個(gè)連續(xù)的正整數(shù),即為,由(1)可知,通過(guò)變化后,所得數(shù)仍然是,所以數(shù)組的極差不會(huì)改變,即,符合題意,當(dāng),這時(shí)三個(gè)數(shù),通過(guò)變化成,這是極差為,或,這樣就可以確定出的取值僅能是2;(3)若是以4為公比的正整數(shù)等比數(shù)列中的任意三項(xiàng),求證:存在滿足,這時(shí)三數(shù)形式為,由二項(xiàng)式定理可知,故所以的極差是3的倍數(shù),這樣根據(jù)極差的定義,通過(guò)操作,得到是一個(gè)公差為的等差數(shù)列,從而可得出結(jié)論.
(1),,3分
(2)法一:
①當(dāng)時(shí),則
所以,,
由操作規(guī)則可知,每次操作,數(shù)組中的最大數(shù)變?yōu)樽钚?shù),最小數(shù)和次
小數(shù)分別變?yōu)榇涡?shù)和最大數(shù),所以數(shù)組的極差不會(huì)改變.
所以,當(dāng)時(shí),恒成立.
②當(dāng)時(shí),則
所以或
所以總有.
綜上討論,滿足的的取值僅能是2. 8分
法二:
因?yàn)?/span>,所以數(shù)組的極差
所以,
若為最大數(shù),則
若,則
若,則,
當(dāng)時(shí),可得,即
由可得
所以
將代入得
所以當(dāng)時(shí),()
由操作規(guī)則可知,每次操作,數(shù)組中的最大數(shù)變?yōu)樽钚?shù),最小數(shù)和次小
數(shù)分別變?yōu)榇涡?shù)和最大數(shù),所以數(shù)組的極差不會(huì)改變.
所以滿足的的取值僅能是2. 8分
(3)因?yàn)?/span>是以4為公比的正整數(shù)等比數(shù)列的三項(xiàng),
所以是形如(其中)的數(shù),
又因?yàn)?/span>
所以中每?jī)蓚(gè)數(shù)的差都是3的倍數(shù).
所以的極差是3的倍數(shù). 9分
法1:設(shè),不妨設(shè),
依據(jù)操作的規(guī)則,當(dāng)在三元數(shù)組(,)中,總滿足是唯一最大數(shù),是最小數(shù)時(shí),一定有,解得.
所以,當(dāng)時(shí),.
,
依據(jù)操作的規(guī)則,當(dāng)在三元數(shù)組(,)中,總滿足是最大數(shù),是最小數(shù)時(shí),一定有,解得.
所以,當(dāng)時(shí),.
,
所以存在,滿足的極差. 13分
法2:設(shè),則
①當(dāng)中有唯一最大數(shù)時(shí),不妨設(shè),則
,
所以
所以,若是3的倍數(shù),則是3的倍數(shù).
所以,則,,
所以
所以11分
②當(dāng)中的最大數(shù)有兩個(gè)時(shí),不妨設(shè),則
,
所以,
所以,若是3的倍數(shù),則是3的倍數(shù).
所以,則,
所以.
所以當(dāng)時(shí),數(shù)列是公差為3的等差數(shù)列. 12分
當(dāng)時(shí),由上述分析可得,此時(shí)
所以存在,滿足的極差. 13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn),它的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.
(1)求橢圓的方程;
(2)斜率為的直線過(guò)點(diǎn),且與拋物線交于兩點(diǎn),設(shè)點(diǎn),的面積為,求的值;
(3)若直線過(guò)點(diǎn),且與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線的縱截距為,證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個(gè)值越高,就代表空氣污染越嚴(yán)重:
日均濃度 | ||||||
空氣質(zhì)量級(jí)別 | 一級(jí) | 二級(jí) | 三級(jí) | 四級(jí) | 五級(jí) | 六級(jí) |
空氣質(zhì)量類型 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
甲、乙兩城市2013年2月份中的15天對(duì)空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測(cè),獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:
(Ⅰ)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí)估計(jì)甲、乙兩城市15天內(nèi)哪個(gè)城市空氣質(zhì)量總體較好?(注:不需說(shuō)明理由)
(Ⅱ)在15天內(nèi)任取1天,估計(jì)甲、乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(Ⅲ)在乙城市15個(gè)監(jiān)測(cè)數(shù)據(jù)中任取2個(gè),設(shè)X為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)甲、乙、丙三所單位進(jìn)行招聘,其中甲單位招聘2名,乙單位招聘2名,丙單位招聘1名,并且甲單位要至少招聘一名男生,現(xiàn)有3男3女參加三所單位的招聘,則不同的錄取方案種數(shù)為( )
A.36B.72C.108D.144
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)對(duì)其定義域內(nèi)的任意,,當(dāng)時(shí)總有,則稱為緊密函數(shù),例如函數(shù)是緊密函數(shù),下列命題:
緊密函數(shù)必是單調(diào)函數(shù);函數(shù)在時(shí)是緊密函數(shù);
函數(shù)是緊密函數(shù);
若函數(shù)為定義域內(nèi)的緊密函數(shù),,則;
若函數(shù)是緊密函數(shù)且在定義域內(nèi)存在導(dǎo)數(shù),則其導(dǎo)函數(shù)在定義域內(nèi)的值一定不為零.
其中的真命題是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)全集,關(guān)于的不等式()的解集為.
(1)求集合;
(2)設(shè)集合,若 中有且只有三個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】裴波那契數(shù)列(Fibonacci sequence )又稱黃金分割數(shù)列,因?yàn)閿?shù)學(xué)家列昂納多·裴波那契以兔子繁殖為例子引入,故又稱為“兔子數(shù)列”,在數(shù)學(xué)上裴波那契數(shù)列被以下遞推方法定義:數(shù)列滿足:,,現(xiàn)從該數(shù)列的前40項(xiàng)中隨機(jī)抽取一項(xiàng),則能被3整除的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒(méi)有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過(guò)7人”.過(guò)去10日,甲、乙、丙、丁四地新增疑似病例數(shù)據(jù)信息如下:
甲地:總體平均數(shù)為3,中位數(shù)為4;
乙地:總體平均數(shù)為1,總體方差大于0;
丙地:總體平均數(shù)為2,總體方差為3;
丁地:中位數(shù)為2,眾數(shù)為3;
則甲、乙、兩、丁四地中,一定沒(méi)有發(fā)生大規(guī)模群體感染的是( )
A.甲地B.乙地C.丙地D.丁地
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某地區(qū)初中學(xué)生的體質(zhì)健康情況,統(tǒng)計(jì)了該地區(qū)8所學(xué)校學(xué)生的體質(zhì)健康數(shù)據(jù),按總分評(píng)定等級(jí)為優(yōu)秀,良好,及格,不及格.良好及其以上的比例之和超過(guò)40%的學(xué)校為先進(jìn)校.各等級(jí)學(xué)生人數(shù)占該校學(xué)生總?cè)藬?shù)的比例如下表:
比例 學(xué)校 等級(jí) | 學(xué)校A | 學(xué)校B | 學(xué)校C | 學(xué)校D | 學(xué)校E | 學(xué)校F | 學(xué)校G | 學(xué)校H |
優(yōu)秀 | 8% | 3% | 2% | 9% | 1% | 22% | 2% | 3% |
良好 | 37% | 50% | 23% | 30% | 45% | 46% | 37% | 35% |
及格 | 22% | 30% | 33% | 26% | 22% | 17% | 23% | 38% |
不及格 | 33% | 17% | 42% | 35% | 32% | 15% | 38% | 24% |
(1)從8所學(xué)校中隨機(jī)選出一所學(xué)校,求該校為先進(jìn)校的概率;
(2)從8所學(xué)校中隨機(jī)選出兩所學(xué)校,記這兩所學(xué)校中不及格比例低于30%的學(xué)校個(gè)數(shù)為X,求X的分布列;
(3)設(shè)8所學(xué)校優(yōu)秀比例的方差為S12,良好及其以下比例之和的方差為S22,比較S12與S22的大小.(只寫(xiě)出結(jié)果)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com